Macaulay2 » Documentation
Packages » LocalRings :: replacements for functions from version 1.0
next | previous | forward | backward | up | index | toc

replacements for functions from version 1.0

This page describes the replacements for functions implemented in version 1.0 of this package by Mike Stillman and David Eisenbud. That version implemented functionality for finding minimal generators, syzygies and resolutions for polynomial rings localized at a maximal ideal.

Defining a local ring using setMaxIdeal and localRing:

i1 : S = ZZ/32003[x,y,z,w]

o1 = S

o1 : PolynomialRing
i2 : P = ideal(x,y,z,w)

o2 = ideal (x, y, z, w)

o2 : Ideal of S
i3 : setMaxIdeal P -- version 1.0

o3 = ideal (x, y, z, w)

o3 : Ideal of S
i4 : R = localRing(S, P) -- version 2.0 and above

o4 = R

o4 : LocalRing, maximal ideal (x, y, z, w)

Computing syzygies using localsyz and syz:

i5 : use S

o5 = S

o5 : PolynomialRing
i6 : m = matrix{{x,y*z},{z*w,x}}

o6 = | x  yz |
     | zw x  |

             2      2
o6 : Matrix S  <-- S
i7 : m * localsyz m

o7 = 0

             2
o7 : Matrix S  <-- 0
i8 : use R

o8 = R

o8 : LocalRing, maximal ideal (x, y, z, w)
i9 : m = matrix{{x,y*z},{z*w,x}}

o9 = | x  yz |
     | zw x  |

             2      2
o9 : Matrix R  <-- R
i10 : m * syz m

o10 = 0

              2
o10 : Matrix R  <-- 0

Computing syzygies using localMingens and mingens:

i11 : use S

o11 = S

o11 : PolynomialRing
i12 : localMingens matrix{{x-1,x,y},{x-1,x,y}}

o12 = | x-1 |
      | x-1 |

              2      1
o12 : Matrix S  <-- S
i13 : use R

o13 = R

o13 : LocalRing, maximal ideal (x, y, z, w)
i14 : mingens image matrix{{x-1,x,y},{x-1,x,y}}

o14 = | x-1 |
      | x-1 |

              2      1
o14 : Matrix R  <-- R

Computing syzygies using localModulo and modulo:

i15 : use S

o15 = S

o15 : PolynomialRing
i16 : localModulo(matrix {{x-1,y}}, matrix {{y,z}})

o16 = {1} | z y    0  |
      {1} | 0 -x+1 -1 |

              2      3
o16 : Matrix S  <-- S
i17 : use R

o17 = R

o17 : LocalRing, maximal ideal (x, y, z, w)
i18 : modulo(matrix {{x-1,y}}, matrix {{y,z}})

o18 = {1} | 0  y    z |
      {1} | -1 -x+1 0 |

              2      3
o18 : Matrix R  <-- R

Computing syzygies using localPrune and prune:

i19 : use S

o19 = S

o19 : PolynomialRing
i20 : localPrune image matrix{{x-1,x,y},{x-1,x,y}}

       1
o20 = S

o20 : S-module, free, degrees {1}
i21 : use R

o21 = R

o21 : LocalRing, maximal ideal (x, y, z, w)
i22 : prune image matrix{{x-1,x,y},{x-1,x,y}}

       1
o22 = R

o22 : R-module, free, degrees {1}

Computing syzygies using localResolution and resolution:

i23 : use S

o23 = S

o23 : PolynomialRing
i24 : localResolution coker matrix{{x,y*z},{z*w,x}}

       2      2
o24 = S  <-- S  <-- 0
                     
      0      1      2

o24 : ChainComplex
i25 : oo.dd

           2                 2
o25 = 0 : S  <------------- S  : 1
                | yz x  |
                | x  zw |

           2
      1 : S  <----- 0 : 2
                0

o25 : ChainComplexMap
i26 : use R

o26 = R

o26 : LocalRing, maximal ideal (x, y, z, w)
i27 : res coker matrix{{x,y*z},{z*w,x}}

       2      2
o27 = R  <-- R
              
      0      1

o27 : ChainComplex
i28 : oo.dd

           2                 2
o28 = 0 : R  <------------- R  : 1
                | yz x  |
                | x  zw |

o28 : ChainComplexMap

Menu