The maps m and n must have the same target, and their sources and targets must be free. If m is null, then it is taken to be the identity. If n is null, it is taken to be zero.
i1 : R = QQ[x,y,z]
o1 = R
o1 : PolynomialRing
|
i2 : setMaxIdeal ideal vars R
o2 = ideal (x, y, z)
o2 : Ideal of R
|
i3 : m = matrix {{x-1, y}}
o3 = | x-1 y |
1 2
o3 : Matrix R <-- R
|
i4 : n = matrix {{y,z}}
o4 = | y z |
1 2
o4 : Matrix R <-- R
|
i5 : modulo (m,n)
o5 = {1} | 0 z 0 y |
{1} | -1 0 z -x+1 |
2 4
o5 : Matrix R <-- R
|
i6 : localModulo (m,n)
o6 = {1} | z y 0 |
{1} | 0 -x+1 -1 |
2 3
o6 : Matrix R <-- R
|