Description
The maps f and g must have the same target, and their sources and targets must be free. If f is null, then it is taken to be the identity. If g is null, it is taken to be zero.
This function is mainly for internal use.
i1 : R = QQ[x,y,z]
o1 = R
o1 : PolynomialRing
|
i2 : f = matrix {{x,y}}
o2 = | x y |
1 2
o2 : Matrix R <-- R
|
i3 : g = matrix {{y,z}}
o3 = | y z |
1 2
o3 : Matrix R <-- R
|
i4 : modulo(f,g)
o4 = {1} | 0 z y |
{1} | 1 0 0 |
2 3
o4 : Matrix R <-- R
|
i5 : kernel( inducedMap(coker g, target g) * f )
o5 = image {1} | 0 z y |
{1} | 1 0 0 |
2
o5 : R-module, submodule of R
|