Macaulay2 » Documentation
Packages » Macaulay2Doc » The Macaulay2 language » Type » Ring » EngineRing » PolynomialRing
next | previous | forward | backward | up | index | toc

PolynomialRing -- the class of all ordered monoid rings

Description

Every element of a polynomial ring is also a RingElement.

See also

Menu

Functions and methods returning a polynomial ring:

  • degreesRing -- the ring or monoid of degrees
  • InexactFieldFamily Array -- see Ring Array -- the standard way to make a polynomial ring
  • Ring Array -- the standard way to make a polynomial ring
  • InexactFieldFamily List -- see Ring List -- make a local polynomial ring
  • Ring List -- make a local polynomial ring
  • InexactFieldFamily Monoid -- see Ring Monoid -- make a polynomial ring
  • Ring Monoid -- make a polynomial ring

Methods that use a polynomial ring:

  • ambient(PolynomialRing) -- see ambient(Ring) -- ambient polynomial ring
  • codim(PolynomialRing) -- see codim(QuotientRing) -- compute the codimension
  • degreeGroup(PolynomialRing) -- see degreeGroup -- the degree group of a ring or monoid
  • describe(PolynomialRing) -- see describe -- real description
  • dim(PolynomialRing) -- see dim(Ring) -- compute the Krull dimension
  • flattenRing(PolynomialRing) -- see flattenRing -- write a ring as a (quotient of a) polynomial ring
  • Grassmannian(ZZ,ZZ,PolynomialRing) -- see Grassmannian -- compute the ideal of the Grassmannian of linear subspaces of a vector space
  • heft(PolynomialRing) -- see heft -- heft vector of ring or monoid
  • hilbertSeries(PolynomialRing) -- compute the Hilbert series of a ring
  • isAffineRing(PolynomialRing) -- see isAffineRing -- whether something is an affine ring
  • isHomogeneous(PolynomialRing) -- see isHomogeneous -- whether something is homogeneous (graded)
  • isPolynomialRing(PolynomialRing) -- see isPolynomialRing -- whether something is a polynomial ring
  • isSkewCommutative(PolynomialRing) -- see isSkewCommutative -- whether a ring has skew commuting variables
  • newCoordinateSystem(PolynomialRing,Matrix) -- see newCoordinateSystem -- change variables
  • newRing(PolynomialRing) -- see newRing -- make a copy of a ring, with some features changed
  • numgens(PolynomialRing) -- see numgens(Ring) -- number of generators of a polynomial ring
  • options(PolynomialRing) -- see options(Monoid) -- get values used for optional arguments
  • precision(PolynomialRing) -- see precision
  • presentation(PolynomialRing,QuotientRing) -- presentation of a quotient ring
  • selectVariables(List,PolynomialRing) -- see selectVariables -- make a subring of a polynomial ring generated by selected variables
  • isWeylAlgebra(PolynomialRing) -- see Weyl algebras

For the programmer

The object PolynomialRing is a type, with ancestor classes EngineRing < Ring < Type < MutableHashTable < HashTable < Thing.


The source of this document is in Macaulay2Doc/doc_rings.m2:186:0.