Description
Computes the Krull dimension of the given ring.
The singular locus of a cuspidal plane curve
i1 : R = QQ[x,y,z]
o1 = R
o1 : PolynomialRing
|
i2 : I =ideal(y^2*z-x^3)
3 2
o2 = ideal(- x + y z)
o2 : Ideal of R
|
i3 : sing = singularLocus(R/I)
o3 = sing
o3 : QuotientRing
|
i4 : dim sing
o4 = 1
|
The exterior algebra is artinian:
i5 : R = ZZ/101[a,b,SkewCommutative => true]
o5 = R
o5 : PolynomialRing, 2 skew commutative variable(s)
|
i6 : dim R
o6 = 0
|
The Weyl algebra in 2 variables:
i7 : R = ZZ/101[x,dx,y,dy,WeylAlgebra => {x=>dx, y=>dy}];
|
i8 : dim R
o8 = 4
|