N = inverseSuperMatrix(G, R)
A super Matrix $M={{M1, M2}, {M3, M4}}$ is invertible, if both the diagonal blocks, $M_1$ and $M_4$ are invertible.
In this case, the inverse is given by a blocked matrix, $T=\begin{pmatrix} T1&T2\\ T3&T4\end{pmatrix}$, where $T_1=(M_1 − M_2M^{-1}_4 M_3)^{-1}$, $T_2=−M^{-1}_1 M_2(M_4 − M_3M^{-1}_1 M_2)^{-1}$, $T_3=−M^{-1}_4 M_3(M_1 − M_2M^{-1}_4 M_3)^{-1}$, and $T_4=(M_4 − M_3M^{-1}_1 M_2)^{-1}$.
|
|
|
|
|
|
The object inverseSuperMatrix is a method function.
The source of this document is in SuperLinearAlgebra.m2:645:0.