Macaulay2 » Documentation
Packages » ReesAlgebra :: minimalReduction(...,BasisElementLimit=>...)
next | previous | forward | backward | up | index | toc

minimalReduction(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step

Description

Here X is a positive integer. Each of these functions computes the Rees Algebra using a saturation step, and the optional argument causes the saturation process to stop after that number of s-pairs is found. This is described in the documentation node for saturate.

See also

Functions with optional argument named BasisElementLimit:

  • gb(...,BasisElementLimit=>...) -- see gb -- compute a Gröbner basis
  • intersectInP(...,BasisElementLimit=>...) -- Option for intersectInP
  • analyticSpread(...,BasisElementLimit=>...)
  • associatedGradedRing(...,BasisElementLimit=>...)
  • distinguished(...,BasisElementLimit=>...)
  • isLinearType(...,BasisElementLimit=>...)
  • isReduction(...,BasisElementLimit=>...)
  • minimalReduction(...,BasisElementLimit=>...) -- Bound the number of Groebner basis elements to compute in the saturation step
  • multiplicity(...,BasisElementLimit=>...)
  • normalCone(Ideal,BasisElementLimit=>...)
  • normalCone(Ideal,RingElement,BasisElementLimit=>...)
  • reesAlgebra(...,BasisElementLimit=>...)
  • reesIdeal(...,BasisElementLimit=>...)
  • specialFiber(...,BasisElementLimit=>...)
  • specialFiberIdeal(...,BasisElementLimit=>...)
  • quotient(...,BasisElementLimit=>...)
  • saturate(...,BasisElementLimit=>...)
  • syz(...,BasisElementLimit=>...) -- see syz(Matrix) -- compute the syzygy matrix

Further information


The source of this document is in ReesAlgebra.m2:2141:0.