We construct via linkage an arithmetically Gorenstein 3-fold $X = X_{6} \cup X_{11} \subset \bf{P}^7$, of degree 17, having Betti table of type [310]. For an artinian reduction $A_F$, the quadratic part of the ideal $F^\perp$ is the ideal of a conic and two independent points $p_1,p_2$, and $F^\perp$ contains a pencil of ideals of five points on the conic and the two fixed points $p_1,p_2$. We construct $X_{11}$ in a quadric in a P6, and $X_{6}$ in a quadric in a P5. In the construction the intersection $X\cup X'$ of a component $X$ with the other is an anticanonical divisor on $X$.
The Betti table is
$\phantom{WWWW} \begin{matrix} &0&1&2&3&4\\ \text{total:}&1&8&14&8&1\\ \text{0:}&1&\text{.}&\text{.}&\text{.}&\text{.}\\ \text{1:}&\text{.}&3&1&\text{.}&\text{.}\\ \text{2:}&\text{.}&5&12&5&\text{.}\\ \text{3:}&\text{.}&\text{.}&1&3&\text{.}\\ \text{4:}&\text{.}&\text{.}&\text{.}&\text{.}&1\\ \end{matrix} $
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The source of this document is in QuaternaryQuartics/Section9Doc.m2:133:0.