Macaulay2 » Documentation
Packages » PruneComplex :: pruneComplex
next | previous | forward | backward | up | index | toc

pruneComplex -- Prunes a chain complex or list of mutable matrices

Description

Prune a chain complex C by removing unit elements from the differentials.

If C is a free resolution for an R-module M, the output will remain a free resolution of M. In particular, if M is homogeneous or R is a local ring, the output is guaranteed to be a minimal free resolution of M.

i1 : R = ZZ/32003[a..f]

o1 = R

o1 : PolynomialRing
i2 : I = ideal"abc-def,ab2-cd2-c,acd-b3-1"

                              2      2         3
o2 = ideal (a*b*c - d*e*f, a*b  - c*d  - c, - b  + a*c*d - 1)

o2 : Ideal of R

Here we produce an intentionally non-minimal resolution from a inhomogeneous ideal:

i3 : S = (coefficientRing R)(monoid [gens R, local h]);
i4 : Ihom = ideal homogenize(sub(gens gb I, S), S_(numgens R));

o4 : Ideal of S
i5 : Chom = (freeResolution(Ihom, Strategy => Nonminimal))[-10];
i6 : C = (map(R, S, gens R | {1})) Chom

      1      9      15      8      1
o6 = R  <-- R  <-- R   <-- R  <-- R
                                   
     10     11     12      13     14

o6 : Complex

Now we use pruneComplex to prune the resolution above:

i7 : D = pruneComplex C

      1      3      3      1
o7 = R  <-- R  <-- R  <-- R
                           
     10     11     12     13

o7 : Complex
i8 : D.dd

           1                                      3
o8 = 10 : R  <---------------------------------- R  : 11
                | ab2-cd2-c b3-acd+1 abc-def |

           3                                             3
     11 : R  <----------------------------------------- R  : 12
                {3} | -abc+def  -b3+acd-1 0         |
                {3} | 0         ab2-cd2-c abc-def   |
                {3} | ab2-cd2-c 0         -b3+acd-1 |

           3                         1
     12 : R  <--------------------- R  : 13
                {6} | b3-acd+1  |
                {6} | -abc+def  |
                {6} | ab2-cd2-c |

o8 : ComplexMap

One way of improving performance is to turn off computation of the pruning map. Note, however, that this may result in incorrect degrees in the graded case:

i9 : D1 = pruneComplex(C, PruningMap => false)

      1      3      3      1
o9 = R  <-- R  <-- R  <-- R
                           
     10     11     12     13

o9 : Complex
i10 : D1.dd

            1                                      3
o10 = 10 : R  <---------------------------------- R  : 11
                 | ab2-cd2-c b3-acd+1 abc-def |

            3                                             3
      11 : R  <----------------------------------------- R  : 12
                 {3} | -abc+def  -b3+acd-1 0         |
                 {3} | 0         ab2-cd2-c abc-def   |
                 {3} | ab2-cd2-c 0         -b3+acd-1 |

            3                         1
      12 : R  <--------------------- R  : 13
                 {6} | b3-acd+1  |
                 {6} | -abc+def  |
                 {6} | ab2-cd2-c |

o10 : ComplexMap

Another method is to use a different pruning strategy. Note that in general there is no well-defined notion of minimality for chain complexes, so different strategies can lead to different results. See the page linked in the optional inputs section above for information on available strategies.

As an example, we can alternate between pruning the lower and higher indices:

i11 : D2 = pruneComplex(C, Strategy => null, Direction => "both")

       1      4      4      1
o11 = R  <-- R  <-- R  <-- R
                            
      10     11     12     13

o11 : Complex
i12 : D2.dd

            1                                                        4
o12 = 10 : R  <---------------------------------------------------- R  : 11
                 | c2d2-bdef+c2 b3-acd+1 abc-def a2cd-bcd2-bc-a |

            4                                                          4
      11 : R  <------------------------------------------------------ R  : 12
                 {4} | abd       b3-acd+1      -ad2ef+ab    -b2   |
                 {3} | bcd2+bc+a -c2d2+bdef-c2 -cd3ef-cdef  -def  |
                 {3} | -ab2d     0             abd2ef-cd2-c acd-1 |
                 {4} | b3+1      0             -b2def       -bc   |

            4                                       1
      12 : R  <----------------------------------- R  : 13
                 {7} | -bc2d2+b2def-bc2        |
                 {7} | -b2cd2+ad2ef-b2c-ab     |
                 {9} | b3-acd+1                |
                 {6} | -b3cd2+abd2ef-b3c-cd2-c |

o12 : ComplexMap

For pruning chain complexes over local rings, pruning scalars by setting UnitTest => isScalar and then pruning other units using UnitTest => isUnit can improve speed. For homogeneous chain complexes (that is, when all maps are homogeneous), since all units are scalars, setting UnitTest => isScalar is always faster:

i13 : R = ZZ/32003[vars(0..8)]

o13 = R

o13 : PolynomialRing
i14 : M = genericMatrix(R,3,3)

o14 = | a d g |
      | b e h |
      | c f i |

              3      3
o14 : Matrix R  <-- R
i15 : I = minors(2, M)

o15 = ideal (- b*d + a*e, - c*d + a*f, - c*e + b*f, - b*g + a*h, - c*g + a*i,
      -----------------------------------------------------------------------
      - c*h + b*i, - e*g + d*h, - f*g + d*i, - f*h + e*i)

o15 : Ideal of R
i16 : C = freeResolution(I, Strategy => Nonminimal)

       1      9      18      14      4
o16 = R  <-- R  <-- R   <-- R   <-- R
                                     
      0      1      2       3       4

o16 : Complex
i17 : pruneComplex(C, UnitTest => isScalar)

       1      9      16      9      1
o17 = R  <-- R  <-- R   <-- R  <-- R
                                    
      0      1      2       3      4

o17 : Complex

Caveat

For inhomogeneous input the resulting complex is not guaranteed to be minimal, particularly because minimality is not well-defined in that case.

If PruningMap is false and the input is not the resolution of a graded ideal, the grading of the resulting complex may be incorrect.

See also

Ways to use pruneComplex:

  • pruneComplex(Complex)
  • pruneComplex(Complex,ZZ)
  • pruneComplex(List)
  • pruneComplex(List,ZZ)
  • pruneComplex(ChainComplex) (missing documentation)
  • pruneComplex(ChainComplex,ZZ) (missing documentation)

For the programmer

The object pruneComplex is a method function with options.


The source of this document is in PruneComplex/doc.m2:114:0.