Macaulay2 » Documentation
Packages » Polyhedra :: PolyhedralObject
next | previous | forward | backward | up | index | toc

PolyhedralObject -- the class of all polyhedral objects in Polyhedra

Description

PolyhedralObject is the parent class of the four polyhedral objects in Polyhedra:
i1 : coneFromVData matrix {{1,2},{2,1}}

o1 = Cone{...1...}

o1 : Cone
i2 : convexHull matrix {{1,1,0,0},{1,0,1,0}}

o2 = Polyhedron{...1...}

o2 : Polyhedron
i3 : hirzebruch 3

o3 = Fan{...1...}

o3 : Fan
i4 : polyhedralComplex crossPolytope 3

o4 = PolyhedralComplex{...1...}

o4 : PolyhedralComplex

Types of PolyhedralObject:

  • Cone -- the class of all rational convex polyhedral cones
  • Fan -- the class of all fans
  • PolyhedralComplex -- the class of all polyhedral complexes
  • Polyhedron -- the class of all convex polyhedra

Methods that use an object of class PolyhedralObject:

  • ambDim(PolyhedralObject) -- see ambDim -- ambient dimension of a Polyhedron, Cone or Fan
  • dim(PolyhedralObject) -- computes the dimension of a cone, polyhedron, fan or polyhedral complex
  • faces(ZZ,PolyhedralObject) -- see faces -- computes all faces of a certain codimension of a Cone or Polyhedron
  • faces(PolyhedralObject) -- Giving the faces of a polyhedral object.
  • fVector(PolyhedralObject) -- see fVector -- computes the f-vector of a Cone, Polyhedron, Fan or PolyhedralComplex
  • isFullDimensional(PolyhedralObject) -- see isFullDimensional -- Determine whether a polyhedral object is full-dimensional
  • isSimplicial(PolyhedralObject) -- see isSimplicial -- checks if a polyhedral object is simplicial
  • isWellDefined(PolyhedralObject) -- see isWellDefined(Cone) -- Checks whether a polyhedral object is well-defined.
  • linealitySpace(PolyhedralObject) -- see linealitySpace -- computes a basis of the lineality space
  • rays(PolyhedralObject) -- displays all rays of a Cone, a Fan, or a Polyhedron

For the programmer

The object PolyhedralObject is a type, with ancestor classes MutableHashTable < HashTable < Thing.


The source of this document is in Polyhedra/documentation/old_documentation.m2:166:0.