Macaulay2 » Documentation
Packages » NormalToricVarieties :: fromWDivToCl(NormalToricVariety)
next | previous | forward | backward | up | index | toc

fromWDivToCl(NormalToricVariety) -- get the map from the group of Weil divisors to the class group

Synopsis

Description

For a normal toric variety, the class group has a presentation defined by the map from the group of torus-characters to group of torus-invariant Weil divisors induced by minimal nonzero lattice points on the rays of the associated fan. Hence, there is a surjective map from the group of torus-invariant Weil divisors to the class group. This method returns a matrix representing this map. Since the ordering on the rays of the toric variety determines a basis for the group of torus-invariant Weil divisors, this matrix is determined by a choice of basis for the class group. For more information, see Theorem 4.1.3 in Cox-Little-Schenck's Toric Varieties.

The examples illustrate some of the possible maps from the group of torus-invariant Weil divisors to the class group.

i1 : PP2 = toricProjectiveSpace 2;
i2 : A1 = fromWDivToCl PP2

o2 = | 1 1 1 |

              1       3
o2 : Matrix ZZ  <-- ZZ
i3 : assert ( (target A1, source A1) === (classGroup PP2, weilDivisorGroup PP2) )
i4 : assert ( A1 * matrix rays PP2 == 0)
i5 : X = weightedProjectiveSpace {1,2,2,3,4};
i6 : A2 = fromWDivToCl X

o6 = | 1 2 2 3 4 |

              1       5
o6 : Matrix ZZ  <-- ZZ
i7 : assert ( (target A2, source A2) === (classGroup X, weilDivisorGroup X) )
i8 : assert ( A2 * matrix rays X == 0)
i9 : Y = normalToricVariety ( id_(ZZ^3) | - id_(ZZ^3));
i10 : A3 = fromWDivToCl Y

o10 = | 1  0  1  0 0 0 0 0 |
      | 1  1  0  0 0 0 0 0 |
      | 1  -1 -1 1 0 0 0 0 |
      | -1 1  1  0 1 0 0 0 |
      | 0  0  1  0 0 1 0 0 |
      | 0  1  0  0 0 0 1 0 |
      | 1  0  0  0 0 0 0 1 |

o10 : Matrix
i11 : classGroup Y

o11 = cokernel | 2 0 |
               | 0 2 |
               | 0 0 |
               | 0 0 |
               | 0 0 |
               | 0 0 |
               | 0 0 |

                               7
o11 : ZZ-module, quotient of ZZ
i12 : assert ( (target A3, source A3) === (classGroup Y, weilDivisorGroup Y) )
i13 : assert ( A3 * matrix rays Y == 0)
i14 : U = normalToricVariety ({{4,-1},{0,1}},{{0,1}});
i15 : A4 = fromWDivToCl U

o15 = | 1 1 |

o15 : Matrix
i16 : classGroup U

o16 = cokernel | 4 |

                               1
o16 : ZZ-module, quotient of ZZ
i17 : assert ( (target A4, source A4) === (classGroup U, weilDivisorGroup U) )
i18 : assert ( A4 * matrix rays U == 0)

This matrix also induces the grading on the total coordinate ring of toric variety.

i19 : assert ( transpose matrix degrees ring PP2 === fromWDivToCl PP2)
i20 : assert ( transpose matrix degrees ring X === fromWDivToCl X)

The optional argument WeilToClass for the constructor normalToricVariety allows one to specify a basis of the class group.

This map is computed and cached when the class group is first constructed.

See also

Ways to use this method: