cotangentSheaf X
For a normal variety, the sheaf of Zariski 1-forms is defined to be the double dual of the cotangent bundle or equivalently the extension of the sheaf of 1-forms on the smooth locus to the entire variety (the complement of the smooth locus has codimension at least two because the variety is normal). By construction, this sheaf is reflexive with rank equal to the dimension of the variety. When the underlying variety is smooth, this is simple the sheaf of 1-forms or the cotangent bundle. For more information, see Theorem 8.1.5 in Cox-Little-Schenck's Toric Varieties.
On a non-degenerate normal toric variety, the sheaf of Zariski 1-forms is associated to the kernel of a map from the character lattice tensor the total coordinate ring to the direct sum over the rays of the quotient of the total coordinate ring by the ideal generated by the corresponding variable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The source of this document is in NormalToricVarieties/SheavesDocumentation.m2:397:0.