A quotient ring is a the quotient of its ambientring by its defining ideal. Other rings have no ambient ring, and the defining ideal is its zero ideal.
i1 : S = ZZ/2[x,y,z];
i2 : ideal S
o2 = ideal ()
o2 : Ideal of S
i3 : R = S/(y^2-x*z,x^2*y-z^2)
o3 = R
o3 : QuotientRing
i4 : ideal R
2 2 2
o4 = ideal (y + x*z, x y + z )
o4 : Ideal of S
i5 : T = R/(x^3-y*z)
o5 = T
o5 : QuotientRing
i6 : ideal T
3
o6 = ideal(x + y*z)
o6 : Ideal of R
i7 : ambient T
o7 = R
o7 : QuotientRing
i8 : sing = singularLocus T
o8 = sing
o8 : QuotientRing
i9 : ideal sing
3 2 2 2 2 3 4 2 2
o9 = ideal (x + y*z, y + x*z, x y + z , z , x + y*z, x*z, x , x y, x z,
------------------------------------------------------------------------
3
x )
o9 : Ideal of S
i10 : ambient sing
o10 = S
o10 : PolynomialRing
See also
ambient -- ambient free module of a subquotient, or ambient ring