Macaulay2 » Documentation
Packages » Macaulay2Doc » modules » Hilbert functions and free resolutions » codim(Module)
next | previous | forward | backward | up | index | toc

codim(Module) -- codimension of the support of a module

Description

Computes the codimension of the support of the module as given by dim(R) - dim(M).
i1 : R = ZZ/101[a..d];
i2 : M = coker matrix{{a,b},{c,d}}

o2 = cokernel | a b |
              | c d |

                            2
o2 : R-module, quotient of R
i3 : codim M

o3 = 1

The returned value is the usual codimension if R is an integral domain or, more generally, equidimensional.

See also

Ways to use this method:


The source of this document is in Macaulay2Doc/functions/codim-doc.m2:68:0.