Description
The reverse lexicographic order is defined by: $x^A > x^B$ if the FIRST non-zero entry of the vector of integers
A-B is NEGATIVE. This is a local order, not a global order. Therefore Gröbner bases over this ring only give generators over the local ring whose fractions are all elements not in the ideal generated by the variables.
i1 : R = QQ[a..d,MonomialOrder => RevLex, Global => false];
|
i2 : a^3 + b^2 + b*c + a*c^2 + b^2*c + a + b + c
2 2 2 3
o2 = c + b + b*c + b + b c + a + a*c + a
o2 : R
|
Computations of Gröbner bases for local orders are done using Mora's algorithm.