Macaulay2 » Documentation
Packages » Macaulay2Doc » matrices » Matrix » Matrix / Number
next | previous | forward | backward | up | index | toc

Matrix / Number -- scalar division

Description

This operation is equivalent to right scalar multiplication by the multiplicative inverse of c, i.e., v * (1/c).

i1 : R = QQ[a,b,c,d]

o1 = R

o1 : PolynomialRing
i2 : matrix {{d, -b}, {-c, a}} / (a * d - b * c)

o2 = | (-d)/(bc-ad) b/(bc-ad)    |
     | c/(bc-ad)    (-a)/(bc-ad) |

                    2             2
o2 : Matrix (frac R)  <-- (frac R)
i3 : vector gens R / 3

o3 = | 1/3a |
     | 1/3b |
     | 1/3c |
     | 1/3d |

      4
o3 : R
i4 : {1,2,3,4} / 3

      1  2     4
o4 = {-, -, 1, -}
      3  3     3

o4 : List

Caveat

The base ring of the output will be a field containing the base ring of v.

See also

Ways to use this method:

  • List / Number
  • List / RingElement
  • Matrix / Number -- scalar division
  • Matrix / RingElement
  • Vector / Number
  • Vector / RingElement

The source of this document is in Macaulay2Doc/operators/division.m2:152:0.