Synopsis
-
- Usage:
GF(p,n)
GF(q)
-
Inputs:
-
p, a prime number
-
n
-
Variable => a symbol, default value null, the name to use for the generator of the field. If null, then a is used.
-
SizeLimit => an integer, default value 10000, the limit on the size of a Galois field whose elements will be represented internally as powers of the primitive element
-
Outputs:
The generator of this ring is a primitive element: it generates the multiplicative group of non-zero elements.
If the single argument form GF(q) is given, q should be a prime power q = p^n
i1 : A = GF(3,2,Variable=>b);
|
i2 : ambient A
ZZ
--[b]
3
o2 = ----------
2
b - b - 1
o2 : QuotientRing
|
i3 : b^8
o3 = 1
o3 : A
|
i4 : b^4
o4 = -1
o4 : A
|
i5 : K = GF 8
o5 = K
o5 : GaloisField
|
i6 : a^3+a
o6 = 1
o6 : K
|