binomialPrimaryDecomposition -- Binomial Primary Decomposition
Synopsis
-
- Usage:
binomialPrimaryDecomposition I
-
Inputs:
-
Optional inputs:
-
Verbose => ..., default value false, generate informative output
-
Outputs:
-
a list of binomial primary components of I
Description
This routine returns a primary decomposition of I into binomial ideals.
i1 : R = QQ[x,y,z]
o1 = R
o1 : PolynomialRing
|
i2 : I = ideal (x*y-z, x*z-y^2)
2
o2 = ideal (x*y - z, - y + x*z)
o2 : Ideal of R
|
i3 : bpd = binomialPrimaryDecomposition I
2 2
o3 = {ideal (y - x*z, x*y - z, x - y), ideal (z, y)}
o3 : List
|
i4 : intersect bpd == I
o4 = true
|
A synonym for this function is
BPD.
Caveat
Currently it can not be guaranteed that the decomposition is irredundant, although serious attempts are made to reduce redundancy.
See also
-
BPD -- Binomial Primary Decomposition
Ways to use binomialPrimaryDecomposition:
-
binomialPrimaryDecomposition(Ideal)