pseudoRemainder -- compute the pseudo-remainder
Synopsis
-
- Usage:
pseudoRemainder(f,g)
-
Inputs:
-
Outputs:
-
a ring element, the pseudo remainder of the polynomial f by the polynomial g
Description
Let
x be the first variable of
R appearing in
g. Suppose that
g has degree
d in
x, and that the coefficient of
x^d in
g (as an element of
R, but not involving the variable
x) is
c. The pseudo remainder of
f by
g is the polynomial
h of degree less than
d in
x such that
c^(e-d+1) * f = q*g + h, where
f has degree
e in
x.
i1 : R = QQ[x,y];
|
i2 : f = x^4
4
o2 = x
o2 : R
|
i3 : g = x^2*y + 13*x^2*y^4 +x*y^2-3*x - 1
2 4 2 2
o3 = 13x y + x y + x*y - 3x - 1
o3 : R
|
i4 : (lg, cg) = topCoefficients g
2 4
o4 = (x , 13y + y)
o4 : Sequence
|
i5 : h = pseudoRemainder(f,g)
6 4 3 4 2 2
o5 = - 27x*y + 87x*y - 2x*y + 14y - 27x*y + 6x*y - 6y + 27x + y + 9
o5 : R
|
i6 : (cg^3 * f - h) % g
o6 = 0
o6 : R
|
i7 : q = (cg^3 * f - h) // g
2 8 2 5 6 4 2 2 3 4 2
o7 = 169x y + 26x y - 13x*y + 39x*y + x y - x*y + 14y + 3x*y - 6y + y
------------------------------------------------------------------------
+ 9
o7 : R
|
i8 : cg^3*f == h + q*g
o8 = true
|
Caveat
There is no pseudo-division implemented, and the only way to change the notion of what the top variable is, is to change to a ring where the variables are in a different order
See also
-
topCoefficients -- first variable and its coefficient of a polynomial or matrix
Ways to use pseudoRemainder:
-
pseudoRemainder(RingElement,RingElement)