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Let M ⊂ Zn be an affine monoid endowed with a positive Z-grading deg. then the
Ehrhart or Hilbert series is the generating function

EM(t) = ∑
x∈M

tdegx =
∞

∑
k=0

#{x ∈M : degx = k}tk,

and E(M,k) = #{x ∈ M : degx = k} is the Ehrhart or Hilbert function of M (see [4] for
terminology and basic theory). It is a classical theorem that EM(t) is the power series
expansion of a rational function of negative degree at t0 = 0 and that E(M,k) is given
by a quasipolynomial of degree rankM−1 with constant leading coefficient equal to the
(suitably normed) volume of the rational polytope

P = cone(M)∩A1

where cone(M) ⊂ Rn is the cone generated by M and A1 is the hyperplane of degree 1
points. In the following we assume that

M = cone(M)∩L

for a sublattice L of Zn. Then E(M,k) counts the L-points in the multiple kP, and is
therefore the Ehrhart function of P (with respect to L).

Monoids of the type just introduced are important for applications, and in some of
them, like those discussed in Section 3, one is naturally led to consider generalized (or
weighted) Ehrhart series

EM, f (t) = ∑
x∈M

f (x)tdegx

where f is a polynomial in n indeterminates. It is well-known that also the generalized
Ehrhart series is the power series expansion of a rational function; see [1], [2].

In this note we describes the computation of generalized Ehrhart seres based on Stan-
ley decompositions [13]. Apart from taking the existence of Stanley decompositions as
granted [13], we give complete and very elementary proofs of the basic facts. They fol-
low exactly the implementation in the offspring NmzIntegrate1 of Normaliz. The input
polynomials of NmzIntegrate must have rational coefficients, and we assume that f is of
this type although it is mathematically irrelevant.

The generalized Ehrhart function is given by a quasipolynomial of degree ≤ deg f +
rankM−1, and the coefficient of kdeg f+rankM−1 can easily be described as the integral of
f over the polytope P. Therefore we have also included (and implemented) an approach
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1Nmzintegrate will be uploaded to [6] together with Normaliz 2.9 by February 2013.
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to the computation of integrals of polynomials over rational polytopes in the spirit of the
Ehrhart series computation. See [2] and [8] for more sophisticated approaches.

Acknowledgement. We gratefully acknowledge the support we received from John Ab-
bott and Anna Bigatti in using CoCoALib [3], on which the multivariate polynomial al-
gebra in NmzIntegrate is based.

1. THE COMPUTATION OF GENERALIZED EHRHART SERIES

Via a Stanley decomposition and substitution the computation of generalized Ehrhart
series can be reduced to the case in which M is a free monoid, and for free monoids one
can split off the variables of f successively so that one ends at the classical case M = Z+.
We go the opposite direction, starting from Z+.

1.1. The monoid Z+. Let M =Z+. By linearity it is enough to consider the polynomials
f (k) = km, k ∈ Z+, for which the generalized Ehrhart series is gien by

∞

∑
k=0

kmtum, u = deg1,

and if necessary we can assume u = 1, substituting t 7→ tu in the final result.
The rising factorials

(k+1)m = (k+1) · · ·(k+m)

form a Z-basis of the polynomial ring Z[k]. Therefore we can write

(1.1) km =
m

∑
j=0

sm, j(k+1) j.

and use that

(1.2)
∞

∑
k=0

(k+1)r tk =

(
1

1− t

)(r)

=
r!

(1− t)r+1 .

Equations (1.1) and (1.2) solve our problem for M = Z+ and f (k) = km:

(1.3)
∞

∑
k=0

kmtuk =
Am,u(t)

(1− tu)m+1 , Am.u(t) ∈ Z[t].

It is enough to compute Am,1(t) because Am.u(t) = Am,1(tu). One should note that Am,u is
a polynomial of degree m. Therefore the rational function in (1.3) has negative degree.

Since the coefficient sm,m of (k+1)m in the representation of km is evidently equal to 1,
we have

(1.4)
∞

∑
k=0

kmtum =
m!

(1− t)m+1 + terms of smaller pole order at t = 1

Remark 1. The coefficients sm, j in (1.1) and the coefficients of the polynomials Am,1 are
well-known combinatorial numbers.

(a) sm, j = (−1)m− jS(m+ 1, j+ 1) where S(p,q) is the Stirling number of the second
kind that counts the number of partitions of a p-set into q blocks. This follows imme-
diately from the classical identity km+1 = ∑

m+1
j=1 (−1)m+1− jS(m+ 1, j)(k) j (for example,

see Stanley [14, 4.3,c]).
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(b) For m = 0 we have A0,1 = 1 and Am,1 = ∑
m
j=1 A(m, j)t j for m > 0 where A(m, j) is

the Eulerian number [14, 4.3,d].

1.2. The monoid Zd
+. Next we consider M = Zd

+. The crucial observation is that the
problem is multiplicative for products of polynomials in disjoint variables. Suppose that
f (x) = g(y)h(z), y = (x1, . . . ,xr), z = (xr+1, . . . ,xd). Then

(1.5) EM, f (t) = ∑
x∈Zd

+

f (x)tdegx =

(
∑

y∈Zd
+

g(y)tdegy
)(

∑
z∈Zn−r

+

h(z)tdegz
)

by multiplication of power series.
In order to exploit (1.5) we split the last variable off,

f (x) = ∑
i

fi(x1, . . . ,xd−1)xi
d,

and obtain

EM, f (t) = ∑
i

( ∑
x′∈Zd−1

+

fi(x′)tdegx′
)(

∞

∑
k=1

kitui
)

= ∑
i

 Ai,u(t)
(1− tu)i+1 ∑

x′∈Zd−1
+

fi(x′)tdegx′

(1.6)

with u = deged .
Applying this formula inductively allows us to eliminate all variables xi and to end with

the desired representation of EZd , f (t).
Generalizing (1.4), let us consider the case in which f is a monomial, f (x1, . . . ,xd) =

xm1
1 · · ·x

md
d , and Z+ is endowed with its standard degree, deg(x) = x1 + · · ·+ xd . Then

equations (1.5) and (1.4) imply that

(1.7) EM, f (t) =
m1! · · ·md!

(1− t)m1+···+md+d + terms of smaller pole order at t = 1.

1.3. Using the Stanley decomposition. We now turn to general M. Normaliz computes
a triangulation Σ of cone(M) into simplicial subcones σ . Moreover, it computes a disjoint
decomposition

cone(M) =
⋃

σ∈Σ

σ \Sσ

where Sσ is a union of facets of σ . The existence of such a decomposition is a nontrivial
fact. Classically it is derived from the Brugesser-Mani theorem on the existence of line
shellings (see Stanley [13]). Instead of a line shelling Normaliz (now) uses a method of
Köppe and Verdoolaege: see [10] and [7, Section 4].

Every simplicial subcone (of full dimension) is generated by linearly independent vec-
tors v1, . . . ,vd ∈M, d = rankM. They generate a free submonoid Mσ of M. For every σ

Normaliz computes the set

Eσ =
{

x ∈ gp(M) : x = α1v1 + · · ·+αdvd, αi ∈ [0,1)
}
.
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For x ∈ Eσ we let ε(x) be the sum of those vi for which (i) αi = 0 and (ii) the facet of σ

opposite to vi lies in the excluded set Sσ (so that x lies in the excluded set). Then it is not
hard to see that we have a disjoint decomposition

M =
⋃

σ∈Σ

⋃
x∈Eσ

x+ ε(x)+Mσ .

It is called a Stanley decomposition since its existence is originally due to Stanley [13].
In the following we set x̃ = x+ ε(x) and

Nσ ,x = x̃+Mσ .

Then
EM, f (t) = ∑

σ

∑
x∈Eσ

ENσ ,x, f (t).

Set r = rankM, and for given σ consider the linear map

ασ : Zd
+→ Zn, ασ (y1, . . . ,yd) = y1v1 + · · ·+ · · ·+ ydvd,

where v1, . . . ,vd is the generating set of Mσ as above. With

degσ y = degασ (y),

gσ ,x(y) = f
(
ασ (y)+ x̃

)
,(1.8)

we have
ENσ ,x, f (t) = tdeg x̃

∑
y∈Zd

+

gσ ,x(y)tdegσ y.

This equation transforms the summation over Nσ ,x into a summation over Zd
+. Then we

can apply (1.6) inductively to

(1.9) Ẽσ , f (t) = ∑
x∈Eσ

ENσ ,x, f (t).

Finally, we sum the rational functions Ẽσ , f (t) over the triangulation Σ.

Remark 2. (a) Instead of applying (1.6) to every σ , we accumulate the polynomials gσ ,x
over all σ that induce the same degree degσ on Zd (the classes formed in this way are
called denominator classes).

(b) The time critical steps in the algorithm are
(1) the coordinate transformation (1.8), and
(2) the inductive application of (1.6).

In order to speed up (1), we factor the polynomial f , transform the factors separately,
and multiply the transformed factors. If f happens to decompose into linear factors, then
multiplication of linear polynomials becomes a time critical step. In order to speed up (2)
we have introduced the denominator classes.

(c) Note that ∑y∈Zd
+

gσ ,x(y)tdegσ y is invariant under permutations of variables yi that
preserve the degrees degσ ei. Therefore one can go over gσ ,x monomial by monomial and
reorder the exponent vectors in such a way that the exponents of variables corresponding
to the same degree become decreasing. The reorrering significantly reduces the number
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of monomials in the polynomials to which (1.6) must be applied, saves memory and also
speeds up (1.6).

(d) We want to point out that (1.6) is not applied recursively. Instead the right hand
side is expanded after the elimination of xd , and xd−1 is then eliminated from the resulting
polynomial whose coefficients are rational functions in t. This procedure is repeated until
all xi have been eliminated.

2. THE QUASIPOLYNOMIAL, ITS VIRTUAL LEADING COEFFICIENT, AND
INTEGRATION

2.1. The quasipolynomial. All rational functions in t that come up in (1.9) can be writ-
ten over the denominator

(1− t`)deg f+rankM

where ` is the least common multiple of the numbers degx for the generators x of M that
appear in the triangulation. This follows from (1.6) if one observes that 1− tu divides
1− t`. Moreover, all summands have negative degree as rational functions in t. Therefore
[14, 4.4.1] implies the following proposition.

Proposition 3.

EM, f (t) =
∞

∑
k=0

q(k)tk

where q is a rational quasipolynomial of period π dividing ` and of degree ≤ deg f +
rankM−1.

The statement about the quasipolynomial means that there exist polynomials q( j), j =
0, . . . ,π−1, of degree ≤ deg f + rankM−1 such that

q(k) = q( j)(k), j ≡ k (π),

and
q( j)(k) = q( j)

0 +q( j)
1 k+ · · ·+q( j)

deg f+rankM−1kdeg f+rankM−1

with coefficients q( j)
i ∈Q. As we will see below, it is justified to call

ed(M, f ) = deg f + rankM−1

the expected degree of q.

2.2. The virtual leading coefficient and Lesbesgue integration. Let m = deg f and
write f = fm+g where fm is the degree m homogeneous component of m. Then degg<m,
and it follows from Proposition 3 that g does not contribute to the coefficient q( j)

ed(M, f ).
Moreover, this coefficient is independent of j and given by an integral, as we will see in
Proposition 4 below.

For the representation as an integral we must norm the measure in such a way that it is
compatible with the lattice structure. We will integrate over the polytope

P = cone(M)∩A1, A1 = {x ∈ Rn : degx = 1}.
Let L0 = L∩RM∩A0 where A0 = {x ∈ Rn : degx = 0} is the linear subspace of degree
0 elements. Then L0 is a (saturated) sublattice of L of rank d − 1 (d = rankM), and
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we choose a basis u1, . . . ,ud−1 of L0. Note that H = RM∩A1 has dimension d− 1 and
contains a point z ∈ L since we have required that deg takes the value 1 on gp(M), and we
can consider the basic L0-simplex δ = conv(z,z+ u1, . . . ,z+ ud−1) in H. Now we norm
the Lesbesgue measure λ on H by giving volume 1/(d − 1)! to the basic L0-simplex.
(The measure is independent of the choice of δ since two basic L0-simplices differ by an
affine-integral automorphism of H.) We call λ the L-Lesbesgue measure on H.

Proposition 4. For all j = 0, . . . ,π−1 one has

(2.1) q( j)
ed(M, f ) =

∫
P

fm dλ .

Proof. We may assume that f is homogeneous of degree m. Let

Lc =
1
c

L.

Then ∫
P

fm dλ = lim
c→∞

∑
x∈P∩Lc

1
cd−1 f (x)

by elementary integration theory.
Note that

f (x) =
1

cm f (cx)

by homogeneity and that x ∈ P∩Lc if and only cx ∈ L∩ cP. Thus∫
P

fm dλ = lim
c→∞

∑
y∈cP∩L

1
cm+d−1 f (y).

On the other hand, we obtain q( j)
ed(M, f ) as the limit over the subsequence (bπ + j)b∈Z+:

q( j)
ed(M, f ) = lim

b→∞
∑

y∈(bπ+ j)P∩L

1
(bπ + j)m+d−1 f (y)

by Proposition 3. This concludes the proof. �

In view of Proposition 4 it is justified to call qed(M, f ) = q( j)
ed(M, f ) the virtual leading

coefficient, and the proposition justifies the term “expected degree” for deg f + rankM−1
the. In analogy with the definition of multiplicity in commutative algebra (for example,
see [5]), we call

vmult(M, f ) = ed(M, f )!qed(M, f )

the virtual multiplicity of (M, f ). It is an integer if P is a lattice polytope and fm has
integral coefficients, as we will see below.
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2.3. Computing the integral. It is natural to compute the integral by summation over
the triangulation: the triangulation of cone(M) into simplicial subcones σ induces a tri-
angulation of the polytope P into simplices δ = σ ∩P. As usual let v1, . . . ,vd ∈M be the
generators of σ . Then δ is spanned by the degree 1 vectors vi/deg(vi), i = 1, . . . ,n. Let
e1, . . . ,ed be the unit vectors in Rr. Then the substitution ei 7→ vi/deg(vi) induces a linear
map Rd → RM that in its turn restricts to an affine map α from the standard degree 1
hyperplane in Rd spanned by e1, . . . ,ed to the hyperplane A1∩RM, and the image of the
unit simplex ∆ is just δ .

Proposition 5. One has

(2.2)
∫

δ

f dλ =
|det(v1, . . . ,vd)|

deg(v1) · · ·deg(vd)

∫
∆

( f ◦α)dµ

where µ is the Zd-Lesbesgue measure on the hyperplane of standard degree 1 in Rd .

Proof. This is just the substitution rule if one observes that the absolute value of the
functional determinant of α|H is given by the factor in in front of the integral. For an
affine map the functional determinant is constant. So we can assume f = 1 and it remains
to relate the volumes of δ and ∆. But ∆ has volume 1/(d− 1)! with respect to µ and δ

has volume
1

(d−1)!
|det(v1, . . . ,vd)|

deg(v1) · · ·deg(vd)
;

with respect to λ ; see [7, Section 4]. �

After the substitution it remains to evaluate the integral over ∆, and this can be done
monomial by monomial:

Proposition 6.

(2.3)
∫

∆

ym1
1 · · ·y

md
d dµ =

m1! · · ·md!
(m1 + · · ·+md +d−1)!

.

Proof. Let g = ym1
1 · · ·y

md
d and M = Z+

d . Then

EM,g(t) =
m1! · · ·md!

(1− t)(m1+···+md+d)
+ terms of smaller pole order at t = 1,

as stated in (1.7).
The quasipolynomial is a true polynomial in this case, and the (virtual) multiplicity is

given by the value of the numerator polynomial at t = 1, namely m1! · · ·md! (for example,
see [5, 4.1.9]). Now Proposition 4 gives the integral. �

3. COMPUTATIONAL EXAMPLES

We illustrate the use of NmzIntegrate by three related examples coming from combi-
natorial voting theory that are discussed in [12]. We refer the reader to [11], [12] or [15]
for a more extensive treatment.

Consider an election in which each of the k voters fixes a linear preference order of n
candidates. In other words, voter i chooses a linear order of the candidates 1, . . . ,n. Each
such order represents a permutation of 1, . . . ,n. Set N = n!. The result of the election is an
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N-tuple (x1, . . . ,xN) in which xp is the number of voters that have chosen the preference
order labeled p p. Then x1 + · · ·+ xN = k, and (x1, . . . ,xN) can be considered as a lattice
point in the positive orthant of RN

+, or, more precisely, as a lattice point in the simplex

U (n)
k = RN

+∩Ak = k
(
RN
+∩A1

)
= kU (n)

where Ak is the hyperplane defined by x1 + · · ·+ xN = k, and U (n) = U (n)
1 is the unit

simplex of dimension N− 1 naturally embedded in N-space. We assume that all lattice
points in the simplex U (n)

k have equal probability of being the outcome of the election.
The following three problems have been considered in [12] for 4 candidates A,B,C,D:
(1) the Condorcet paradox,
(2) the Condorcet efficiency of plurality voting,
(3) plurality voting versus cutoff.

For n = 4 one has N = 24, and the dimension of the polytope U (4) is already quite large.
Let us say that candidate A beats candidate B if the number of voters that prefer can-

didate A to candidate B is larger than the number of voters with the opposite preference.
Candidate A is the Condorcet winner if A beats all other candidates. As the Marquis de
Condorcet noticed, the relation “beats” is nontransitive for some outcomes of the election,
and there may be no Condorcet winner. This phenomenon is called the ondorcet paradox.
Problem (1) asks for its asymptotic probability as the number k of voters goes to ∞, or
even for the precise number of election results without a Condorcet winner, depending on
the number k of voters.

It is not hard to see that the outcomes that have A is the Condorcet winner can be
described by three homogeneous linear inequalities whose coefficients are given in Table
1 (relative to the lexicographic order of the permutations of A,B,C,D). They cut out a

λ1: 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 −1
λ2: 1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1 −1 −1
λ3: 1 1 1 1 1 1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1

TABLE 1. Inequalities expressing that A beats the other 3 candidates

rational polytope from U (n), and the probability of Condorcet’s paradox can be computed
rom the volume of the polytope. Finding the precise number of election results without (or
with) a Condorcet winner requires the computation of the Ehrhart function of the semi-
open polytope . Neither Normaliz nor NmzIntehgrate can yet compute Ehrhart series for
semi-open polytopes directly, but it is always possible to fall back on inclusion/exclusion.

We refer the reader to [7] for a description of problems (2) and (3) and for the systems
of linear inequalities to be solved in each case. Normaliz 2.8 can indeed compute the
volumes and the Ehrhart series in dimension 24 that arise from tasks (1), (2) and (3)
despite the fact that the triangulations to be evaluated for (2) and (3) are formidable (see
Table 3 or [7]).

As Schürmann [12] observed, the computations can be considerably simplified by ex-
ploiting the symmetries in the inequalities: some variables share the same coefficients
in each inequality, for example the first 6 variables in Table 1. Therefore they can be
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replaced by their sum, and the replacement constitutes a projection of the original poly-
topes, monoids or cones onto objects of smaller dimension. For the Condorcet paradox
the system of inequalities reduces to Table 2. However, instead of simply counting lattice

1 -1 1 1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1

TABLE 2. Inequalities exploiting the symmetries in Table 1

points, one must now count them with their numbers of preimages. These are given by
polynomials, namely products of binomial coefficients. In our example the polynomial is(

y1 +5
5

)
(y2 +1)(y3 +1)(y4 +1)(y5 +1)(y6 +1)(y7 +1)

(
y8 +5

5

)
where y1 = x1+ · · ·+x6 etc.In other words, the Ehrhart function (or the volume) of a high
dimensional polytope is replaced by a generalized Ehrhart function of a polytope of much
lower dimension (or the virtual leading coefficient of the quasipolynomial).

A priori it may not be clear that the replacement of combinatorial complexity in high
dimension by multivariate polynomial arithmetic in low dimension pays dividends, but
this is indeed the case. Tables 3 and 4 compare both approaches for the Ehrhart series.
The computations were run on a SUN xFire 4450 with 20 parallel threads (but the number
of active threads is limited by the size of the triangulation). Volume computations are
faster by a factor of approximately 3 in each case.

computation triangulation size real time

Condorcet paradox 1,473,107 00:00:30 h

Condorcet efficiency 347,225,775,338 218:13:55 h

plurality vs. cutoff 257,744,341,008 175:11:26 h

TABLE 3. Computation times for original data

computation rank degree of triangulation real time
polynomial size

Condorcet paradox 8 16 17 0.5 sec

Condorcet efficiency 13 11 17,953 5:49:29 h

plurality vs. cutoff 6 18 3 32.5 sec

TABLE 4. Computation times for symmetrized data

A welcome side effect of the computations of the generalized Ehrhart functions is that
they have confirmed the results reported on in [7].
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