NmzIntegrate 1.0

Winfried Bruns and Christof Soger

wbruns@uos.de
csoeger@uos.de

1 The objectives of NmzlIntegrate

We assume in the following that the reader is familiar with Normaliz, in particular with its
treatment of Ehrhart series and quasipolynomials. NmzIntegrate requires Normaliz 2.9 or
higher.

Normaliz computes certain data for a monoid
M=CnNL

where C C R” is a rational, polyhedral and pointed cone, and L C Z" is a sublattice. These
data are defined by the input to Normaliz. Nmzintegrate requires that M has been endowed
with a grading deg (see the manual of Normaliz 2.9).

For such graded monoids Normaliz can compute the volume of the rational polytope
P={xeR M :degx=1},

the Ehrhart series of P, and the quasipolynomial representing the Ehrhart function. (Here
R+ M is the cone generated by the elements of M; it may be smaller than C if L has rank < n.)

These computations can be understood as integrals of the constant polynomial f = 1, namely
with respect to the counting measure defined by L for the Ehrhart function, and with respect to
the (suitably normed) Lebesgue measure for the volume. Nmzlntegrate generalizes these com-
putations to arbitrary polynomials f in n variables with rational coefficients. (Mathematically,
there is no need to restrict oneself to rational coefficients for f.)

More precisely, set

E(f)=) [,

xeM ,degx=k

and call E(f,_) the generalized Ehrhart function for f. (With f = 1 we simply count lattice
points.) The generalized Ehrhart series is the ordinary generating function

Ert)= Y E(f.)

k=0

It turns out that E¢(¢) is the power series expansion of a rational function at the origin, and can
always be written in the form

o(1)

Ef(f) = (l _ tﬁ)totdengrrankM’

Q(t) € Q[t], degQ < totdeg f + rank M.

Here totdeg f is the total degree of the polynomial f, and / is the least common multiple of
the degrees of the extreme integral generators of M. See [2] for an elementary account and the
algorithm used by NmzIntegrate.

It follows from the general theory of rational generating functions that there exists a quasipoly-
nomial ¢(k) with rational coefficients and of degree < totdeg f + rank M — 1 that evaluates to
E(f,k) for all k > 0. A quasipolynomial is a “polynomial” with periodic coefficients: there
exists a period € N and true polynomials ¢/ € Q[X], j=0,...,7 — 1, such that

gk)=qV(k) it k=j (7).
Each of the polynomials g\ is given as

q(j) (k) _ q(()]) +Q§])X 4. +qt(({t)degf—i-rankM—lXtOtdegf+rankM_l

with constant coefficients in Q. The period 7 divides /.

Let m = totdeg f and f,, be the degree m homogeneous component of f. By letting k£ go to
infinity and approximating f;, by a step function that is constant on the meshes of %L (with
respect to a fixed basis), one sees

() B
Trotdeg f+rankM—1 — /me dA

where dA is the Lebesgue measure that takes value 1 on a basic mesh of LNRM in the hyper-

plane of degree 1 elements in RM. In particular, the virtual leading coefficient qt(ét)deg FtrankM—1
is constant and depends only on f,,,. If the integral vanishes, the quasipolynomial ¢ has smaller
degree, and the true leading coefficient need not be constant. Following the terminology of
commutative algebra and algebraic geometry, we call

(totdeg f +rank M — 1)! - giodeg f+rankM—1

the virtual multiplicity of M and f. It is an integer if f has integral coefficients and P is a
lattice polytope.

Nmzlntegrate computes

(ES) the generalized Ehrhart series and its quasipolynomial,
(Int) the Lebesgue integral of f over P, or
(LC) the virtual leading coefficient and the virtual multiplicity.

The user controls the type of computation by a command line option. (ES) contains (LC), and
(LC) is just the evaluation of (Int) on the highest homogeneous component of f. It is presently
not possible to compute the Ehrhart series and the integral together if f is not homogeneous.

Acknowledgement. We gratefully acknowledge the support we received from John Abbott and
Anna Bigatti in using CoCoALib, on which the multivariate polynomial algebra in NmzInte-
grate is based.

2 Input files

2.1 Files produced by Normaliz

As usual, Normaliz starts from the file <project>.in. One runs Normaliz with the option
-T (or -y) for (Int) and (LC),
-y for (ES).
(It is allowed to combine -T and -vy.)
This will produce the files with the following suffixes (in addition to <project>.out and
possibly further output files determined by the Normaliz options -f and -a):
-T inv, tgn, tri
-y inv, tgn, dec.
NmzIntegrate reads
e the grading from <project>.inv,
e the rays of the triangulation from <project>.tgn,
e the triangulation from <project>.tri (for (Int) and (LC)) and
e the Stanley decomposition from <project>.dec (for (ES)).
If <project>.tri does not exist for one of the tasks (Int) or (LC), NmzIntegrate checks for
the existence of <project>.dec and reads the triangulation from it.

Nmzintegrate does not read other files, neither <project>.in nor any other output file of
Normaliz.
2.2 The polynomial

The polynomial is read from the file <project>.pnm. The input format is defined by the
following rules:

The polynomial is a product of factors.
The factors are separated by the character *.

A factor is a sum of terms.

Sl

A term is a product of a rational number and a monomial. The number 1 can of course
be omitted.

5. A monomial is a (possibly empty) product of indeterminates x[<i>] or powers x[<i>]"<j>
of indeterminates where <i> represents an index between 1 and n and <j> represents a
nonnegative integer.

6. Spaces and line breaks act as separators: they are not allowed within numbers, indeter-
minates or powers of indeterminates.

7. The brackets (and) can be used for visual structuring. They have no mathematical
meaning (so far), and act like spaces.

Note that the names of the variables are fixed: x[1],...,x[<n>] where <n> represents the
number n. Since spaces act as separators, x [1]1, x[1] or x[2]”~ 3 are illegal (so far), as well
as 1/ 2 or 1 /2. Furthermore it should be noted that the character * is only allowed between
factors, but not within a factor, and in particular not in a term or a monomial.

An example:
1/120%(x[1]1+x[2]172) *(-2x[3]1x[4])

is a well formed input polynomial. Spaces (or line breaks) can be inserted on one or both sides
of the characters *+- and also between factors of a term. Like brackets they do not change the
polynomial. Therefore

1/120 * x[1]1+x[2]72 * -2x[3]1x[4]

represents the same polynomial.

3 Running NmzlIntegrate

There are three ways to run NmzIntegrate:
1. direct call from the command line
2. call from Normaliz (see Normaliz manual)
3. from jNormaliz via Normaliz.

The shortest possible command to start NmzIntegrate is
nmzIntegrate <project>
This will run the default computation (ES) on the <project>. The full input syntax is
nmzIntegrate [-cEIL] [-x=<T>] <project>

where -c and -x=<T> have the same meaning as for Normaliz:

-c activates the verbose mode in which control information is written to the terminal,
-x=<T> limits the number of parallel threads to <T>.

The remaining options control the type of computation:

-E activates the computation (ES) (the default mode, can be omitted),
-I activates the computation (Int),
-L activates the computation (LC).

These three options can be accumulated. If at least two options are set, the computations are
carried out according to the following rules:

e If -E is present, -L will be suppressed since its result is contained in that of -E.
e If -I is present, then it will be suppressed if one of -E or L is set and the polynomial is
homogeneous since -L and -I are identical for homogeneous polynomials.

If two different computations are carried out, then their output will appear consecutively in the
output file.

Note that NmzIntegrate may need much more memory than Normaliz, especially with a high
number of parallel threads. This is due to the fact that it may have to cope with very long
polynomials.

4 The output file

The output will be written to the file <project>.int0ut (so that it can be clearly distinguished
from the Normaliz output file).

NmzlIntegrate factors the polynomial, and the factorization is written to the output file. For the
computation (LC) the polynomial is first replaced by its leading form, and the output file then
contains the factorization of the leading form.

The output file is self explanatory, but see the Normaliz documentation for the interpretation
of the format in which the generalized Ehrhart series and the quasipolynomial are printed.

Please have a look at the files
rationalES.intOut, rationalInt.intOut and rationallLC.intOut.

They were all produced from the example file rational.in in the Normaliz distribution and
the file rational.pnm, and rational.intOut was suitably renamed.

The directory example contains further input files suited for NmzIntegrate- Look out for files
with the suffix pnm.

5 Distribution and installation

The basic package (source, documentation, examples) for Nmzlntegrate is contained in the
basic package of Normaliz that you can download from

http://www.math.uos.de/normaliz

The installation is described in the Normaliz documentation.

Likewise the executable of NmzIntegrate is contained in the Normaliz executable package for
your system.

Therefore NmzIntegrate does not need a separate installation.

6 Compilation

Before the compilation of NmzIntegrate you must compile Normaliz 2.9 and install CoCoLib
0.9951 [T (not contained in the Normaliz distribution). NmzIntegrate will not compile with
later versions of CoCoALib or earlier versions of Normaliz.

Important: after the configuration of CoCoALib , but before its compilation via make you
must modify the file configuration/autoconf.mk in the following way: add the flag

-DCoCoA_THREADSAFE_HACK

to the definition of CXXFLAGS_COMMON (probably near line 24 of configuration/autoconf.mk).

Under Linux or Mac OS navigate to the directory genEhrhart and run make. You should move
the executable nmzIntegrate to the directory that contains normaliz.

Depending on the location of CoCoALib, you may have to adjust the path leading to it in the
Makefile in genEhrhart.

If you should want to compile NmzIntegrate under MS Windows, please contact the authors.

7 Copyright and how to cite

Nmzlntegrate 1.0 is free software licensed under the GNU General Public License, version 3.
You can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which NmzIntegrate it has been used:

W. Bruns, B. Ichim and C. Soger: Normaliz. Algorithms for rational cones and affine
monoids. Available from http://www.math.uos.de/normaliz.

You can add a reference to [2] in order to indicate that NmzlIntegrate has been used.

http://www.math.uos.de/normaliz
http://www.math.uos.de/normaliz

References

[1] J. Abbott and A. Bigatti, CoCoALib. A GPL C++ library for doing Computations in
Commutative Algebra. Available from http://cocoa.dima.unige.it/cocoalib/

[2] W. Bruns and C. Soger, Generalized Ehrhart series and Integration in Normaliz.larXiv:
1211.5178

http://cocoa.dima.unige.it/cocoalib/
arXiv:1211.5178
arXiv:1211.5178

	The objectives of NmzIntegrate
	Input files
	Files produced by Normaliz
	The polynomial

	Running NmzIntegrate
	The output file
	Distribution and installation
	Compilation
	Copyright and how to cite

