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Polynomial systems

Systems of polynomial equations have been used to model problems in

areas such as: robotics, cryptography, statistics, optimization, computer

vision, power networks, graph theory.
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-
Polynomial systems

Systems of polynomial equations have been used to model problems in
areas such as: robotics, cryptography, statistics, optimization, computer
vision, power networks, graph theory.

Given polynomial equations F = {f1,..., fn}, let
V(F) :={xeR": fi(x) = - = fm(x) = 0}
denote the associated variety.
Depending on the application we might be interesting in:
Feasibility Is there any solution, i.e., V(F) # (7
Counting How many solutions?

Dimension What is the dimension of V(F)?

Components Decompose V(F) into irreducible components.
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Polynomial systems and graphs

Systems coming from applications often have simple sparsity structure.
We can represent this structure using graphs.

Given m equations in n variables, construct a graph as:
o Nodes are the variables {xp, ..., xn—1}.

@ For each equation, add a clique connecting the variables appearing in
that equation
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Polynomial systems and graphs

Systems coming from applications often have simple sparsity structure.
We can represent this structure using graphs.

Given m equations in n variables, construct a graph as:
o Nodes are the variables {xp, ..., xn—1}.

@ For each equation, add a clique connecting the variables appearing in
that equation

O (1)
Example: '
2

F= {xgxle +2x1 + 1, x12 + X2, X1+ X2, Xox3}
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Polynomial systems and graphs

Systems coming from applications often have simple sparsity structure.
We can represent this structure using graphs.

Given m equations in n variables, construct a graph as:
o Nodes are the variables {xp, ..., xn—1}.

@ For each equation, add a clique connecting the variables appearing in
that equation

(9 (D)
Example: '
@
F= {xgxle +2x1 + 1, x12 + X2, X1+ X2, Xox3}

©

Question: Can the graph structure help solve polynomial systems?
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Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra,
graphical models, constraint satisfaction, database theory, ...

Key notions: chordality and treewidth.
Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton,

Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl,
Robertson/Seymour, ...
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Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra,
graphical models, constraint satisfaction, database theory, ...

Key notions: chordality and treewidth.
Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton,

Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl,
Robertson/Seymour, ...

Remarkably (AFAIK) almost no work in computational algebraic geometry
exploits this structure.
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-
Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra,
graphical models, constraint satisfaction, database theory, ...

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton,
Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl,
Robertson/Seymour, ...

Remarkably (AFAIK) almost no work in computational algebraic geometry
exploits this structure.

We hope to change this... ;)
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-
Chordal graphs

For a graph G, an ordering of its vertices

. .. (vl
Xg > X1 > -+ > Xp—1 is a perfect elimina- cligv 4
tion ordering if for each x, ~
Xo :={xm : xm is adjacent to x;, Xy > Xm} Ko

is a clique.
A graph is chordal if it has a perfect elimination ordering.
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Chordal graphs

For a graph G, an ordering of its vertices

. .. (vl
Xg > X1 > -+ > Xp—1 is a perfect elimina- cligv 4
tion ordering if for each x, b
Xo :={xm : xm is adjacent to x;, Xy > Xm} X

is a clique.
A graph is chordal if it has a perfect elimination ordering.

A chordal completion of G is supergraph that
is chordal.
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Elimination tree of a chordal graph

The elimination tree of a graph G is the
following directed spanning tree:

For each ¢ there is an arc towards its
smallest neighbor p, with p > £.
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|
Example 1: Coloring a cycle
Let C, = (V, E) be the cycle graph and consider
the ideal I given by the equations
x?—1=0, ieV
x,-2—|—x,-xj—|—xj2:0, ijekE

These equations encode the proper 3-colorings of the graph. Note that
coloring the cycle graph is very easy!
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Example 1: Coloring a cycle

Let C, = (V, E) be the cycle graph and consider
the ideal I given by the equations

x?—1=0, ieV
x,-2—|—x,-xj—|—xj2:0, ijekE

These equations encode the proper 3-colorings of the graph. Note that
coloring the cycle graph is very easy!

However, a Grébner basis is not so simple: one of its 13 elements is

X0XpXaXp + X0XpXax7 + XgxpX4xg + X0xpX5Xg + X0XpX5X7 + XqXpX5Xg + XgXpXgXg + XgXpXx7xg + x0x2x82 + XpX3X4Xp + X9X3X4X7
+X0X3X4Xg + X0X3X5X6 + XQX3X5X7 + X0X3X5Xg + X0X3X6Xg + X0X3X7%Xg + XOX3X§ + x0x4x6Xg + XoXax7Xg + XOX4X§ + x0X5%6Xg
+XxpX5Xx7Xxg + X0X5X82 + x0x6x§ + x0x7x82 + Xp + X1 XpXgXg + X1 XpX4X7 + X1 XpX4Xg + X1 XpX5Xg + X] XpX5X7 + X] XpX5Xg
+x1X0X6Xg + x| Xpx7xg + x1x2x82 + X1X3X4X6 + X]X3X4X7 + X1 X3X4Xg + X] X3X5X6 + X] X3X5X7 + X] x3X5%X8 + X] X3X6Xg + X] X3X7Xg
+X1X3X82 + X1 X4XgXg + X1 Xg4Xx7Xg + x1><4x§ + X1 X5XgXg + X1 X5Xx7Xxg + x1><5x82 + x1x6x§ + X1X7X82 + X1 + XpXxaXgXg + XpX4Xx7Xg
+x2x4x§ + xpx5X6Xg + XpX5X7Xg + x2x5x§ + ><2x6x§ + x2x7x§ + xp + x3x4x6%g + X3x4x7%g + X3X4X§ + x3x5XGXg + X3X5X7Xg

+X3X5X82 + X3X6X82 + ><3><7)<82 + x3 + X4X6X82 + X4X7X82 + xa + X5x6x82 + X5X7X82 + x5 + X + X7 + xg
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Elimination ideals

The elimination ideals of an ideal | C K[x, - - - xp—1] are

/0 =l

=INK[x1, x2, X3, Xp—1]

~
firy

N

=INK[x2, x3, -+ Xp—1]
=INK[x3, - Xp—1]

&

l,_1:=IN K[Xn_]_]

The system of equations is feasible if and only if /,_; # (1). We can also
find a solution by backtracking.
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Example 1: Coloring a cycle

There is an alternative representa- " - g T ‘

tion of the ideal, that respects its
graphical structure.

x?+xixg +x3) ¢

The variety can be decomposed into
triangular sets:

V(1) =UJw(T)

T

where the union is overall all maxi-
mal directed paths (or chains).

The number of triangular sets is 21,
which is the 8-th Fibonacci number.
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Example 2: Minimal vertex covers

Let G = (3 x P, be a graph of nested triangles.
Consider the minimal vetex cover problem.

Find a minimal subset of S C V such that every
edge is incident to at least one vertex in S.
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Example 2: Minimal vertex covers

Let G = (3 x P, be a graph of nested triangles.
Consider the minimal vetex cover problem.

Find a minimal subset of S C V such that every
edge is incident to at least one vertex in S.

We can solve this problem algebraically using the edge ideal
I(G) := (xix; : ij € E)

The minimal vertex covers of G are in bijection with the irreducible
components of /(G).
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Example 2: Minimal vertex covers

For the graph of nested triangles,
ideal /(G) has 3 x 2"~ components.

They correspond to the maximal di-
rected paths in the diagram.
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Example 3: Ideal of adjacent minors

I = {x0ix0j43 — Xoit1X2i42 : 0 < i < n}

b
This is the ideal of adjacent minors of the
matrix

X0 X2 X4 -+ Xop-2
X1 X3 X5 -+ Xop—1

The total number of irreducible compo- "":
nents is the n-th Fibonacci number.
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Example 3: Ideal of adjacent minors

I = {x0ix0j43 — Xoit1X2i42 : 0 < i < n}

b
This is the ideal of adjacent minors of the
matrix

X0 X2 X4 -+ Xop-2
X1 X3 X5 -+ Xop—1

The total number of irreducible compo- '.
nents is the n-th Fibonacci number.

More generally, the ideal of adjacent minors of a k X n matrix also has a
simple chordal network representation.
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Chordal networks

A G-chordal network is a directed graph A/, whose nodes are polynomial
sets, satisfying the following conditions
@ arcs follow elimination tree: if (Fy, Fp) is an arc, then (¢, p) is an arc
of the elimination tree, where ¢ = rank(F;), p = rank(Fp).

@ nodes supported on cliques: each node F of A is given a rank
¢ := rank(F), such that F only involves variables in the clique Xj.
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Chordal networks (Example)

G(03+)<02X7+X0X72 +x73) (g(xoﬁxs,n)) A,

""""""""""""""""" E(><13+x12xg+x1x92+xg3) (g(xl,x,g,xg))é

................................ : 5623+X22X5+X2X52+X53) @(XZX&XSD?

T A AU S X3 + x5 + x7 + xg) (g(x3,x7, x8) ):

g(a,b,c):=a®+b?+c?+ab+ bc+ca
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Computing chordal networks: Triangular sets

Defn: A zero dimensional triangular set is T = {to, ..., t,—1} such that
to = x§° + g0 (X0, X1, - + - s Xn—1), (deg,,(g0) < do)
dn_
tho2 = ,7722 + gnf2(an27anl)7 (degx,,,2 (gl) < dnf2)

th-1 = gn—l(Xn—l)

Remk: A triangular set is a Grobner basis w.r.t. lexicographic order.

Defn: Let / C K[X] be a zero dimensional ideal. A triangular
decomposition of / is a collection T of triangular sets, such that

V()= || W(T)

TeT
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Computing chordal networks (Example)

The ideal
I = (xox2 — xz,xg’ — X0, X1 — X2,X22 — X2, X2 — X3)
can be decomposed into three triangular sets
Tl = (Xg — Xp, X1 — X2, X2, X3),
To=(x—1, x1—x, x2—1, x3),
Ts=(x0—-1, x1—x, x2—1, x3—1).
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|
Computing chordal networks (Example)
The ideal
I = (xo%2 — X2, X3 — X0, X1 — X, X3 — X2, %2 — X3)
can be decomposed into three triangular sets

3
Tl = (XO — Xp, X1 — X2, X2, X3)7
T2 = (XO - ]-7 X1 — X2, X2 — 17 X3)7
Ts=(x0—-1, x1—x, x2—1, x3—1).

These triangular sets correspond to chains of a chordal network
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Computing chordal networks (Example)

(3 2 1
< X0 — X0, X0x2 — X2, X3 —X2) :

2
X1 — X2, X5 — X2

x22 — X2, x2x32 — X3
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Computing chordal networks (Example)

2 2
X5 — X2,XaX3 — X3
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Computing chordal networks (Example)

2 2
X5 — X2,XaX3 — X3
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Example)

Computing chordal networks
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Main results

Thm 1: Chordal triangularization obtains a G-chordal network, whose
chains give a triangular decomposition of F.
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N
Main results

Thm 1: Chordal triangularization obtains a G-chordal network, whose
chains give a triangular decomposition of F.

For “nice” cases the chordal network obtained has linear size.

Thm 2: Let F be a family of structured polynomial systems such that
|[V(F NK[X/])| is bounded for any F € F and for any maximal clique X;.
Then any F € F admits a chordal network representation of size O(n).
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Chordal networks in computational algebra

Given a triangular chordal network A of an ideal /, we can compute in
linear time:

@ the cardinality of V(/).
@ the dimension of V(/)
@ the top dimensional part of V().

We also show efficient algorithms for:

@ radical ideal membership.

e computing equidimensional (sometimes irreducible) components.
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Chordal networks in computational algebra

Given a triangular chordal network A of an ideal /, we can compute in
linear time:

@ the cardinality of V(/).
@ the dimension of V(/)
@ the top dimensional part of V().

We also show efficient algorithms for:

@ radical ideal membership.

e computing equidimensional (sometimes irreducible) components.
The main difficulty is that there might be exponentially many chains. It

can be overcomed by cleverly using dynamic programming (or
message-passing).
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Links to BDDs

Very interesting connections with binary decision
diagrams (BDDs).
@ A clever representation of Boolean
functions/sets, usually much more compact i<
than naive alternatives TN

@ Enabler of very significant practical
advances in (discrete) formal verification
and model checking

@ "“One of the only really fundamental data
structures that came out in the last
twenty-five years” (D. Knuth)

For the special case of monomial ideals, chordal
networks are equivalent to (reduced, ordered)
BDDs. But in general, more powerful!
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Summary

@ Chordal structure can notably help in computational algebraic
geometry.

@ Many classes of ideals admit simple chordal network representations.

@ Try our Macaulay?2 package!!!
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Summary

@ Chordal structure can notably help in computational algebraic
geometry.

@ Many classes of ideals admit simple chordal network representations.

@ Try our Macaulay?2 package!!!

If you want to know more:

@ D. Cifuentes, P.A. Parrilo (2017), Chordal networks of polynomial ideals. SIAM J. of
Applied Algebra and Geometry, 1(1):73-170. arXiv:1604.02618.

@ D. Cifuentes, P.A. Parrilo (2016), Exploiting chordal structure in polynomial ideals: a
Grdbner basis approach. SIAM J. Discrete Math., 30(3):1534-1570. arXiv:1411.1745.

@ D. Cifuentes, P.A. Parrilo (2016), An efficient tree decomposition method for permanents
and mixed discriminants. Linear Alg. and its Appl., 493:45-81. arXiv:1507.03046.

Thanks for your attention!
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