
FROBBY USER MANUAL - VERSION 0.9.7

BJARKE HAMMERSHOLT ROUNE

Contents

1. Installation 1
1.1. Cygwin preparation 2
1.2. Mac OS 10.5 preparation using Fink 2
1.3. Linux or Mac preparation without Fink 2
1.4. Installation of Frobby 2
2. Tutorial 2
2.1. File formats 3
2.2. An example file and transformation 4
2.3. Compute the Alexander dual of an ideal 5
2.4. Hilbert-Poincaré Series 6
2.5. Intersection of ideals 7
2.6. Irreducible decomposition 8
2.7. Primary decomposition 9
2.8. Associated primes 10
2.9. Transform a polynomial 10
2.10. Maximal standard monomials 11
2.11. The Frobenius problem 11
2.12. Analyze an ideal 12

This is a minimal manual for Frobby. At present it contains information on how
to install Frobby on your system, as well as documentation in the form of a tutorial
which shows how to do most things that Frobby can do.

The most complete reference for the functionality of Frobby is the help system
built into Frobby. However that system may be too complete to serve as a good
introduction, and this manual is intended to cover that area.

This manual will be expanded in time to cover the algorithms that Frobby uses,
explain the file formats in detail and cover the mathematical meaning of the com-
putations that Frobby performs.

1. Installation

Frobby is tested to work on Linux, Mac OS 10.5 and Cygwin on Windows. It
may work on other platforms, but that has not been tested. Although the procedure
to install Frobby is the same on these platforms, Frobby requires the GMP library,
which is installed in different ways depending on platform.

1

2 BJARKE HAMMERSHOLT ROUNE

1.1. Cygwin preparation. Before installing Frobby, first run the Cygwin file
setup.exe, and then install the following Cygwin packages.

libgmp-devel: In category libs. For infinite-precision integers.
make: In category devel. To build Frobby.
gcc-g++: In category devel. To compile Frobby.
diffutils: In category utils. For Frobby’s test system, which uses diff.

1.2. Mac OS 10.5 preparation using Fink. If you have fink installed on your
system, simply type

fink install gmp-shlibs libgmpxx-shlibs

1.3. Linux or Mac preparation without Fink. Download the newest version of
GMP from http://gmplib.org/ and unpack it somewhere. Then start a terminal,
go to the directory where you unpacked it, and type

./configure --enable-cxx

make

make check

make install

Typing “make check” is optional but recommended to make sure that your sys-
tem compiled GMP properly. If you have trouble installing GMP, first consult the
GMP manual and then ask for help on the gmp-discuss@gmplib.org mailing list.

1.4. Installation of Frobby. This step is the same on all platforms. First down-
load the latest version of Frobby from http://www.broune.com/frobby/. Then
open a terminal, go to the directory where you downloaded Frobby, and type

tar -xvf frobby_v0.8.2.tar.gz

cd frobby_v0.8.2

make

make install

To see if your installation of Frobby is working, type

frobby

You should now be looking at information about Frobby and its help system. If
you instead get a message along the lines of “command not found”, type

bin/frobby

If that works, the install script was not able to place Frobby in a convenient place on
your system, probably because you don’t have the access rights to install programs
centrally on your system. In that case you can simply call Frobby as bin/frobby
from the directory where you unpacked it, or you can place the binary somewhere
on your path where you do have access rights to put it.

If you want to check that your Frobby compiled correctly, type

make test

This will run a comprehensive battery of tests on Frobby, which can take a while,
especially on Cygwin, which is generally a slower platform.

2. Tutorial

This is a tutorial on how to use the command line interface for Frobby.

FROBBY USER MANUAL - VERSION 0.9.7 3

2.1. File formats. All of the file formats that Frobby understands are files that
will make sense to some other piece of mathematical software as well. In general
Frobby will figure out by itself which of the possible formats you are using, and will
produce output in that same format, so this is not something you normally have to
think about. In this tutorial we will be using the Macaulay 2 format, which looks
like this:

R = QQ[a, b, c, d];

I = monomialIdeal(

a^2,

a*b^5,

c

);

This describes the monomial ideal
〈
a2, a ∗ b5, c

〉
as an ideal in the polynomial ring

Q[a, b, c]. There is some syntaxtic noice in this file format, such as “I = mono-
mialIdeal(”, which is solely there so that Macaulay 2 will understand the file. In
general, if the variables are x1, . . . , xn and the generators are g1, . . . , gk, then the
corresponding file will look like

R = QQ[x1,...,xn];

I = monomialIdeal(

g1,

...,

gk

);

It is important to note that Frobby does not understand Macaulay 2 code at all
– it merely reads this very specific file format. This is why Frobby is so fussy about
this precise syntax being used. E.g. this is not valid:

T = QQ[a, b, c, d];

I = monomialIdeal(

a^2,

a*b^5,

c

);

The error is that it must be “R=” and not “T=”, so Frobby will display the error

SYNTAX ERROR (format m2, line 1):

Expected R, but got "T".

Likewise, this will also result in an error:

R = QQ[a, b, c, d];

I = monomialideal(

a\^2,

a*b\^5,

c

);

The error is that the second i in “monomialIdeal” is lower-case, and it is supposed
to be upper-case. Frobby will diplay the error

SYNTAX ERROR (format m2, line 2):

Expected monomialIdeal, but got "monomialideal".

4 BJARKE HAMMERSHOLT ROUNE

There is one particular error that is easy to make, namely that indeterminates in
the same monomial must be separated by an asterisk *. This is because indetermi-
nates can have names of more than one character, so otherwise there is no way to
distinguish between the product of a and b and a single indeterminate named ab.
Thus on this input:

R = QQ[a, b, c];

I = monomialIdeal(

a^2b,

b*c^2,

c^3*a^3

);

Frobby will produce the following error:

SYNTAX ERROR (format m2, line 3):

Expected), but got "b".

Frobby is expecting a right parenthesis because that would make sense after the 2
on line 3, seeing as there is no * there.

Note that Frobby does not care about additional space, and it does not distin-
guish between a space and a newline.

To see a list of all file formats that Frobby supports, type

frobby help io

To see an example of a monomial ideal in a format X, type

frobby genideal -oformat X

If you do not specify a format, the Macaulay 2 format will be used, so if you type
simply

frobby genideal

You will get something like

R = QQ[x1, x2, x3];

I = monomialIdeal(

x1^3*x2^5*x3^6,

x1^2*x2^6*x3,

x1^5*x2^2*x3^8,

x1^8*x2*x3^3,

x1^5*x2^4*x3^7

);

However, genideal generates a random ideal, so every time you run it, you will likely
get a different ideal.

2.2. An example file and transformation. We will need an example to run the
following commands on, so take the following lines and put them into a file called
“input”.

R = QQ[a, b, c];

I = monomialIdeal(

a^2*b,

b*c^2,

c^3*a^3

);

FROBBY USER MANUAL - VERSION 0.9.7 5

To check that you wrote the format correctly, try to get Frobby to read the file
by typing

frobby transform < input

If you get an error from Frobby, then you didn’t type the file in correctly.
Note how transform produced output in the Macaulay 2 format. If you want to

transform your file into a different format, you can do so by typing

frobby transform < input -oformat monos

which will produce output in a format that can be understood by the program
Monos. It will print

vars a, b, c;

[

a^2*b,

b*c^2,

a^3*c^3

];

In general Frobby uses the first non-space character of an input file to figure out
what format it is in, and it then produces output in that same format, unless
you specify the input or output format explicitly using the command-line options
-oformat and -iformat.

In general you tell frobby to do something by typing

frobby ACTION OPTIONS

where ACTION is something to do, and OPTIONS is a possibly empty list of
options that specify how to do that thing. Thus you can make the transform action
behave in a number of different ways depending on the options you give it. To take
a look at everything that transform can do, type

frobby help transform

In general you can get information on any action by typing

frobby help ACTION

where ACTION is the name of the action. To get a list of all actions, type

frobby help

2.3. Compute the Alexander dual of an ideal. To compute the Alexander
dual of our ideal, type

frobby alexdual < input

which produces the output

R = QQ[a, b, c];

I = monomialIdeal(

b*c,

a^2*c^2,

a*b

);

And it is indeed true that the Alexander dual of
〈
a2b, bc2, a3c3

〉
is

〈
bc, a2c2, ab

〉
.

By default Frobby will compute the Alexander dual of the input according to
the point that is the least common multiple of the minimal generators of the input
ideal. To use some other point, append that monomial at the end of the file.

We can append a line by using echo and cat like this:

6 BJARKE HAMMERSHOLT ROUNE

echo a^10*b^10*c^10|cat input -

which prints

R = QQ[a, b, c];

I = monomialIdeal(

b*c,

a^2*c^2,

a*b

);

a^10*b^10*c^10

so if we feed this to alexdual like this:

echo a^10*b^10*c^10|cat input -|frobby alexdual

we get the Alexander dual of the ideal according to a10b10c10, which is

R = QQ[a, b, c];

I = monomialIdeal(

b^10*c^8,

a^9*c^9,

a^8*b^10

);

To see the options that alexdual accepts, type

frobby help alexdual

Also note that you generally don’t have to type actions out, you only have to
specify a unique prefix. So to get the Alexander dual, it is sufficient to type

frobby al < input

However, it is not enough to just type

frobby a < input

Since this is ambigous with the actions assoprimes and analyze, that also have “a”
as a prefix. In this case, Frobby reports that:

ERROR: Prefix "a" is ambigous.

Possibilities are: alexdual assoprimes analyze

2.4. Hilbert-Poincaré Series. To get the Hilbert-Poincaré series, type

frobby hilbert < input

which produces the output

R = QQ[a, b, c];

p =

1 +

-b*c^2 +

-a^2*b +

a^2*b*c^2 +

-a^3*c^3 +

a^3*b*c^3;

This means that the numerator of the Hilbert-Poincaré series of
〈
a2b, bc2, a3c3

〉
is

1− bc2 − a2b+ a2bc2 − a3c3 + a3bc3

FROBBY USER MANUAL - VERSION 0.9.7 7

so the series itself is

1− bc2 − a2b+ a2bc2 − a3c3 + a3bc3

(1− a)(1− b)(1− c)

This is the multivariate, Nn-graded hilbert series. You may want the numerator of
the univariate Hilbert-Poincaré series, which you get by typing

frobby hilbert < input -univariate

This produces the output

R = QQ[t];

p =

t^7 +

-t^6 +

t^5 +

-2*t^3 +

1;

so the univariate Hilbert-Poincaré series is

t7 − t6 + t5 − 2t3 + 1

(1− t)3

Frobby always uses the variable t for the univariate series. The univariate series is
gotten from the multivariate series by substituting t for each of the variables in the
ring, in this case a = t, b = t and c = t.

2.5. Intersection of ideals. We will now intersect two ideals, so we need another
file with an ideal in it. Type the following ideal into a file named input2:

R = QQ[d, b, c];

I = monomialIdeal(

d*b*c,

b^2*c

);

This is the ideal
〈
dbc, b2c

〉
. To intersect that with the ideal

〈
a2b, bc2, a3c3

〉
, we will

need to concatenate the two files representing these two ideals. This is done by
typing

cat input input2

which produces the output

R = QQ[a, b, c];

I = monomialIdeal(

a^2*b,

b*c^2,

a^3*c^3

);

R = QQ[d, b, c];

I = monomialIdeal(

d*b*c,

b^2*c

);

If we pass this to the intersect action, we will get the intersection. So type

cat input input2|frobby intersect

8 BJARKE HAMMERSHOLT ROUNE

to get the output

R = QQ[a, b, c, d];

I = monomialIdeal(

b*c^2*d,

b^2*c^2,

a^2*b*c*d,

a^2*b^2*c

);

Note that we now have 4 variables in the first line, since the two ideals together
used these 4 variables. We see that the intersection is〈

bc2d, b2c2, a2bcd, a2b2c
〉

2.6. Irreducible decomposition. To get the irreducible decomposition, type

frobby irrdecom < input

which produces the output

R = QQ[a, b, c];

I = monomialIdeal(

b,

c^3

);

I = monomialIdeal(

a^2,

c^2

);

I = monomialIdeal(

a^3,

b

);

Note how the list of the variables does not have to be repeated because all three
ideals lie in the same ring. This is saying that the irreducible decomposition of〈
a2b, bc2, a3c3

〉
is {〈

b, c3
〉
,
〈
a2, c2

〉
,
〈
a3, b

〉}
Then it should be true that the intersection of these three ideals is the original
ideal, and indeed, if we type

frobby irrdecom < input|frobby intersection

we get the output

R = QQ[a, b, c];

I = monomialIdeal(

b*c^2,

a^2*b,

a^3*c^3

);

This format for a list of the irreducible components takes up a lot of space and is
not the easiest to read. We can get a more compact notation by encoding each
irreducible ideal as the product of its generators, noting that this is a bijection
between irreducible ideals and monomials. Do this by typing

FROBBY USER MANUAL - VERSION 0.9.7 9

frobby irrdecom < input -encode

to get the output

R = QQ[a, b, c];

I = monomialIdeal(

b*c^3,

a^2*c^2,

a^3*b

);

Here the monomial generator bc3 corresponds to the irreducible ideal
〈
b, c3

〉
.

2.7. Primary decomposition. Frobby can compute primary decompositions as
well as irreducible decompositions. We need an example where there is a difference
between these two things, so type this into a file named input3:

R = QQ[d, b, c];

I = monomialIdeal(

d*b*c,

b^2*c,

b^10,

d^10

);

To get the primary decomposition, type

frobby primdecom < input3

which produces the decomposition

R = QQ[d, b, c];

I = monomialIdeal(

d^10,

b^10,

c

);

I = monomialIdeal(

d*b,

d^10,

b^2

);

Note that these two ideals are primary, and that their intersection equals the original
ideal (you should know how to check the intersection yourself by now).

An irreducble decomposition is also a primary decomposition, since an irreducible
ideal is primary, but the irreducible decomposition can have many more elements
than the primary decomposition does. In this case it has one more, since we get
the irreducible decomposition by typing

frobby irrdecom < input3

which produces the output

R = QQ[d, b, c];

I = monomialIdeal(

d,

b^2

);

10 BJARKE HAMMERSHOLT ROUNE

I = monomialIdeal(

d^10,

b

);

I = monomialIdeal(

d^10,

b^10,

c

);

The primary decomposition is not unique, but Frobby computes the “nicest” pri-
mary decomposition, which is the one gotten by intersecting irreducible components
of the same support, and that primary decomposition is unique.

2.8. Associated primes. You get the associated primes by typing

frobby assoprimes < input3

R = QQ[d, b, c];

I = monomialIdeal(

d*b,

d*b*c

);

Each generator encodes an associated prime. In this case the associated primes
are ⟨d, b⟩ and ⟨d, b, c⟩. You can check that these are the radicals of the primary
components,

2.9. Transform a polynomial. Transform does a number of things to ideals, and
ptransform is the corresponding action for polynomials. Put a polynomial into the
file pinput by typing

frobby hilbert < input > pinput

Then type

cat pinput

to get

R = QQ[a, b, c];

p =

1 +

-b*c^2 +

-a^2*b +

a^2*b*c^2 +

-a^3*c^3 +

a^3*b*c^3;

This is a file that Macaulay 2 can understand. To change the format of this file to
something that Singular can understand, type

frobby ptransform < pinput -oformat singular

to get

ring R = 0, (a, b, c), lp;

int noVars = 0;

poly p =

1

FROBBY USER MANUAL - VERSION 0.9.7 11

-b*c^2

-a^2*b

+a^2*b*c^2

-a^3*c^3

+a^3*b*c^3;

You might notice that the Singular format has something called noVars. This is
there merely because all Frobby formats must be able to represent a ring with no
variables, and Singular has no such concept. Thus Frobby gets around that by
always giving the ring at least one variable, but writing noVars=1 if there really
should not be any, and noVars=0 otherwise.

To get the polynomial into a format that 4ti2 might have produced, if it had a
concept of polynomials, type

frobby ptransform < pinput -oformat 4ti2

to get

6 4

1 0 0 0

-1 0 1 2

-1 2 1 0

1 2 1 2

-1 3 0 3

1 3 1 3

(coefficient) a b c

The first line indicates the size of the matrix, and each row of the matrix is a term,
with the first number being the coefficient, and the remaining numbers being the
exponent vector. I.e. the exponent of a, b and c respectively in that order.

To see what else ptransform can do, type

frobby help ptransform

Note that if we knew in advance that we wanted to change the format to, say, 4ti2
format, we could have produced the file pinput in that format directly by typing

frobby hilbert < input > pinput -oformat 4ti2

2.10. Maximal standard monomials. To produce the maximal standard mono-
mials, type

frobby maxstandard < input3

to get

R = QQ[d, b, c];

I = monomialIdeal(

d^9*b^9

);

2.11. The Frobenius problem. Given an input vector p = (p1, . . . , pn) of positive
relatively prime integers, the Frobenius number of p is the largest integer that
cannot be written as a linear combination of p1, . . . , pn where the coefficients in the
combination are non-negative integers.

To work with this, put the following example in a file named frob

6 10 15

and type

12 BJARKE HAMMERSHOLT ROUNE

frobby frobdyn < frob

to get as output that the Frobenius number is

29

The frobdyn action uses an obscenely slow dynamic programming algorithm to
compute the Frobenius number. If you install the program 4ti2 and put it into the
empty 4ti2 subfolder of the Frobby folder, you can use an algorithm that is much
faster when the Frobenius number itself is moderately large.

Assume that you have installed 4ti2 in that folder. Then, within the Frobby
folder, type

./frobgrob frob

which will produce the same output, namely

29

Now put this input into a file named frob2

1234567890001

348461546433

6484646532513541

45464188888115164

1561484651561864468465310

and type

./frobgrob frob2

to get that the Frobenius number is

15111053020091472900

This computation would never have completed using the dynfrob action. Note that
you get better performance if you sort the numbers in increasing order.

Note that ./frobgrob is a script that uses 4ti2 and the frobgrob action of Frobby.
This is a bit annoying to get right, which is why there is a script doing it. To get
a hint on how to do this yourself directly without using the script, take a look at
the script, look at the documentation for 4ti2, and type

frobby help frobgrob

to get an idea about what input frobgrob expects.
You can also generate random Frobenius instances by typing

frobby genfrob

to produce something like

4259 8346 12295 18936 22645 27086 34182 69298 74617 84570

The output is random, so you will likely get a different instance.

2.12. Analyze an ideal. To get Frobby to analyze the ideal and tell you what it
figured out about it, type

frobby analyze < input

which produces the output

3 generators

3 variables

This is admittedly not an impressive level of analysis being performed. To see a
few more things that analyze can do, type

frobby help analyze

FROBBY USER MANUAL - VERSION 0.9.7 13

The idea is that this action will be expanded to provide actual valuable information,
such as whether the ideal is strongly generic, if it is weakly generic, strongly/weakly
co-generic, how many irreducible and primary components it has, if any of the given
generators are non-minimal and various things like that.

