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In this chapter we explain constructive methods for computing the cohomol-
ogy of a sheaf on a projective variety. We also give a construction for the
Beilinson monad, a tool for studying the sheaf from partial knowledge of
its cohomology. Finally, we give some examples illustrating the use of the
Beilinson monad.

1 Introduction

In this chapter V denotes a vector space of finite dimension n+ 1 over a field
K with dual space W = V ∗, and S = SymK(W ) is the symmetric algebra of
W , isomorphic to the polynomial ring on a basis for W . We write E for the
exterior algebra on V . We grade S and E by taking elements of W to have
degree 1, and elements of V to have degree −1. We denote the projective
space of 1-quotients of W (or of lines in V ) by Pn = P(W ).

Serre’s sheafification functor M 7→ M̃ allows one to consider a coherent
sheaf on P(W ) as an equivalence class of finitely generated graded S-modules,
where we identify two such modules M and M ′ if, for some r, the truncated
modules M≥r and M ′≥r are isomorphic. A free resolution of M , sheafified,
becomes a resolution of M̃ by sheaves that are direct sums of line bundles on
P(W ) – that is, a description of M̃ in terms of homogeneous matrices over S.
Being able to compute syzygies over S one can compute the cohomology of
M̃ starting from the minimal free resolution of M (see [16], [40] and Remark
3.2 below).

The Bernstein-Gel’fand-Gel’fand correspondence (BGG) is an isomor-
phism between the derived category of bounded complexes of finitely ge-
nerated S-modules and the derived category of bounded complexes of finitely
generated E-modules or of certain “Tate resolutions” of E-modules. In this
chapter we show how to effectively compute the Tate resolution T(F) as-
sociated to a sheaf F , and we use this construction to give relatively cheap
computations of the cohomology of F .

It turns out that by applying a simple functor to the Tate resolution
T(F) one gets a finite complex of sheaves whose homology is the sheaf F
itself. This complex is called a Beilinson monad for F . The Beilinson monad
provides a powerful method for getting information about a sheaf from partial
knowledge of its cohomology. It is a representation of the sheaf in terms of
direct sums of (suitably twisted) bundles of differentials and homomorphisms
between these bundles, which are given by homogeneous matrices over E.

The following recipe for computing the cohomology of a sheaf is typical
of our methods: Suppose that F = M̃ is the coherent sheaf on P(W ) asso-
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ciated to a finitely generated graded S-module M = ⊕Mi. To compute the
cohomology of F we consider a sequence of free E-modules and maps

F(M) : · · · - F i−1 φi−1- F i
φi- F i+1 - · · · .

Here we set F i = Mi ⊗K E and define φi : F i - F i+1 to be the map
taking m⊗ 1 ∈Mi ⊗K E to∑

j

xjm⊗ ej ∈Mi+1 ⊗ V ⊂ F i+1,

where {xj} and {ej} are dual bases of W and V respectively. It turns out
that F(M) is a complex; that is, φiφi−1 = 0 for every i (the reader may easily
check this by direct computation; a proof without indices is given in [18]).
If we regard Mi as a vector space concentrated in degree i, so that F i is a
direct sum of copies of E(−i), then these maps are homogeneous of degree 0.

We shall see that if s is a sufficiently large integer then the truncation of
the Tate resolution

F s
φs- F s+1 - · · ·

is exact and is thus the minimal injective resolution of the finitely generated
graded E-module Ps = kerφs+1. (In fact any value of s greater than the
Castelnuovo-Mumford regularity of M will do.)

Because the number of monomials in E in any given degree is small com-
pared to the number of monomials of that degree in the symmetric algebra,
it is relatively cheap to compute a free resolution of Ps over E, and thus to
compute the graded vector spaces TorEt (Ps,K). Our algorithm exploits the
fact, proved in [18], that the j

th
cohomology HjF of F in the Zariski topology

is isomorphic to the degree −n− 1 part of TorEs−j(Ps,K); that is,

HjF ∼= TorEs−j(Ps,K)−n−1.

In addition, the linear parts of the matrices in the complex T(F) determine
the graded S-modules

Hj
∗F := ⊕i∈ZHjF(i) .

In many cases this is the fastest known method for computing cohomology.
Section 2 of this paper is devoted to a sketch of the Eisenbud-Fløystad-

Schreyer approach to the Bernstein-Gel’fand-Gel’fand correspondence, and
the computation of cohomology, together with Macaulay 2 programs that
carry it out, is explained in Section 3.

The remainder of this paper is devoted to an explanation of the Beilinson
monad, how to compute it in Macaulay 2, and what it is good for. This
technique has played an important role in the construction and study of
vector bundles and varieties. In the typical application one constructs or
classifies monads in order to construct or classify sheaves.
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The BGG correspondence and Beilinson’s monad were originally formu-
lated in the language of derived categories, and the proofs were rather compli-
cated. The ideas of Eisenbud-Fløystad-Schreyer exposed above allow, for the
first time, an explanation of these matters on a level that can be understood
by an advanced undergraduate.

The Beilinson monad is similar in spirit to the technique of free re-
solutions. That theory essentially describes arbitrary sheaves by comparing
them with direct sums of line bundles. In the Beilinson technique, one uses
a different set of “elementary” sheaves, direct sums of exterior powers of
the tautological sub-bundle. Beilinson’s remarkable observation was that this
comparison has a much more direct connection with cohomology than does
the free resolution method.

Sections 4 and 5 are introductory in nature. In Section 4 we begin with
a preparatory discussion of the necessary vector bundles on projective space
and their cohomology. In Section 5 we define monads, a generalization of
resolutions. We give a completely elementary account which constructs the
Beilinson monad in a very special case, following ideas of Horrocks, and we
use this to sketch part of one of the first striking applications of monads:
the classification of stable rank 2 vector bundles on the projective plane by
Barth, Hulek and Le Potier.

In Section 6 we give the construction of Eisenbud-Fløystad-Schreyer for
the Beilinson monad in general. This is quite suitable for computation, and
we give Macaulay 2 code that does this job.

A natural question for the student at this point is: “Why should I bother
learning Beilinson’s theorem, what is it good for?” In section 7, we describe
two more explicit applications of the theory developed. In the first, the classi-
fication of elliptic conic bundles in P4, computer algebra played a significant
role, demonstrating that several published papers contained serious mistakes
by constructing an example they had excluded! Using the routines developed
earlier in the chapter we give a simpler account of the crucial computation.

In the second application, the construction of abelian surfaces in P4

and the related Horrocks-Mumford bundles, computer algebra allows one to
greatly shorten some of the original arguments made. As the reader will see,
everything follows easily with computation, once a certain 2 × 5 matrix of
exterior monomials, given by Horrocks and Mumford, has been written down.
One might compare the computations here with the original paper of Hor-
rocks and Mumford [25] (for the cohomology) and the papers by Manolache
[32] and Decker [13] (for the syzygies) of the Horrocks-Mumford bundle. A
great deal of effort, using representation theory, was necessary to derive re-
sults that can be computed in seconds using the Macaulay 2 programs here.
Much more theoretical effort, however, is needed to derive classification re-
sults.

Another application of the construction of the Beilinson complex (in a
slightly more general setting) is to compute Chow forms of varieties; see [19].
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Perhaps the situation is similar to that in the beginning of the 1980’s
when it became clear that syzygies could be computed by a machine. Though
syzygies had been used theoretically for many years it took quite a while
until the practical computation of syzygies lead to applications, too, mostly
through the greatly increased ability to study examples.

A good open problem of this sort is to extend and make more precise
the very useful criterion given in 4.4: Can the reader find a necessary and
sufficient condition to replace the necessary condition for surjectivity given
there? How about a criterion for exactness?

2 Basics of the Bernstein-Gel’fand-Gel’fand
Correspondence

In this section we describe the basic idea of the BGG correspondence, intro-
duced in [8]. For a more complete treatment along the lines given here, see
the first section of [18].

As a simple example of the construction given in Section 1, consider the
case M = S = SymK(W ). The associated complex, made from the homoge-
neous components Symi(W ) of S, has the form

F(S) : E - W ⊗ E - Sym2(W )⊗ E - · · · ,

where we regard SymiW as concentrated in degree i. It is easy to see that the
kernel of the first map, E - W⊗E, is exactly the socle

∧n+1
V ⊂ E, which

is a 1-dimensional vector space concentrated in degree −n− 1. In fact F(S)
is the minimal injective resolution of this vector space. If we tensor with the
dual vector space

∧n+1
W (which is concentrated in degree n+ 1), we obtain

the minimal injective resolution of the vector space
∧n+1

W ⊗
∧n+1

V , which
may be identified canonically with the residue field K of E. This resolution
is called the Cartan resolution of K. To write it conveniently, we set ωE =∧n+1

W ⊗E. The socle of ωE is K. Since E is injective (as well as projective)
as an E-module, the same goes for ωE , so ωE is the injective envelope of the
residue class field K and we have ωE = HomK(E,K). Thus we can write the
injective resolution of the residue field as

R(S) : ωE - W ⊗ ωE - Sym2(W )⊗ ωE - · · · ,

or again as

HomK(E,K) - HomK(E,W ) - HomK(E,Sym2(W )) - · · · .

Taking our cue from this situation, our primary object of study in the case
of an arbitrary finitely generated graded S-module M = ⊕Mi will be the
complex

R(M) : · · · - Mi ⊗ ωE - Mi+1 ⊗ ωE - · · · ,
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which will have a more natural grading than F(M); in any case, it differs
from F(M) only by tensoring over K with the one-dimensional K-vector
space

∧n+1
W , concentrated in degree n + 1, and thus has the same basic

properties. (Writing R(M) in terms of Hom as above suggests that the functor
R might have a left adjoint, and indeed there is a left adjoint that produces
linear free complexes over S from graded E-modules. R and its left adjoint
are used to construct the isomorphisms of derived categories in the BGG
correspondence; see [18] for a treatment in this spirit.)

An important fact for us is that the complex R(M) is eventually exact
(and thus

F i
φi- F i+1 - · · ·

is the minimal injective resolution of kerφi when i� 0). It turns out that the
point at which exactness sets in is a well-known invariant, the Castelnuovo-
Mumford regularity of M , whose definition we briefly recall:

If M = ⊕Mi is a finitely generated graded S-module then for all large
integers r the submodule M≥r ⊂M is generated in degree r and has a linear
free resolution; that is, its first syzygies are generated in degree r + 1, its
second syzygies in degree r+ 2, etc. (see [17, chapter 20]). The Castelnuovo-
Mumford regularity of M is the least integer r for which this occurs.

Theorem 2.1 ([18]). Let M be a finitely generated graded S-module of Cas-
telnuovo-Mumford regularity r. The complex R(M) is exact at HomK(E,Mi)
for all i ≥ s if and only if s > r. ut

More generally, it is shown in [18] that the components of the cohomology
of the complex R(M) can be identified with the Koszul cohomology of M .
An equivalent result was stated in [10].

For instance, it is not hard to show that if M is of finite length, then the
regularity of M is the largest i such that Mi 6= 0. Let us verify Theorem 2.1
directly in a simple example:

Example 2.2. Let S = K[x0, x1, x2], and let M = S/(x2
0, x

2
1, x

2
2). The mod-

ule M≥3 = K · x0x1x2 is a trivial S-module, and its resolution is the Koszul
complex on x0, x1 and x2, which is linear. Thus the Castelnuovo-Mumford
regularity of M is ≤ 3. On the other hand M≥2 is, up to twist, isomorphic
to the dual of S/(x0, x1, x2)2, and it follows that the resolution of M≥2 has
the form

0 - S(−6) - 6S(−4) - 8S(−3) - 3S(−2),

which is not linear, so the Castelnuovo-Mumford regularity of M is exactly
3. Note that the regularity is larger than the degrees of the generators and
relations of M—in general it can be much larger.

Over E the linear free complex corresponding to M has the form

· · · → 0→M0 ⊗ ωE →M1 ⊗ ωE →M2 ⊗ ωE →M3 ⊗ ωE → 0→ · · · ,
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where all the terms not shown are 0. Using the isomorphism ωE ∼= E(−3)
this can be written (non-canonically) as

0 - E(−3)


e0

e1

e2


- 3E(−2)


0 e2 e1

e2 0 e0

e1 e0 0


- 3E(−1)

(
e0 e1 e2

)
- E - 0.

One checks easily that this complex is inexact at every non-zero term (despite
its resemblance to a Koszul complex), verifying Theorem 2.1. ut

Another case in which everything can be checked directly occurs when M
is the homogeneous coordinate ring of a point:

Example 2.3. Take M = S/I where I is generated by a codimension 1 space
of linear forms in W , so that I is the homogeneous ideal of a point p ∈ P(W ).
The free resolution of M is the Koszul complex on n linear forms, so M is
0-regular. As Mi is 1-dimensional for every i the terms of the complex R(M)
are all rank 1 free E-modules. One easily checks that R(M) takes the form

R(M) : ωE
a- ωE(−1)

a- ωE(−2)
a- · · · ,

where a ∈ V = W ∗ is a linear functional that vanishes on all the linear
forms in I; that is, a is a generator of the one-dimensional subspace of V
corresponding to the point p. As for any linear form in E, the annihilator of
a is generated by a, and it follows directly that the complex R(M) is acyclic
in this case. ut

We present two Macaulay 2 functions, symExt and bgg, which compute
a differential of the complex R(M) for a finitely generated graded module
M defined over some polynomial ring S = K[x0, . . . , xn] with variables xi of
degree 1. Both functions expect as an additional input the name of an exterior
algebra E with the same number n + 1 of generators, also supposed to be
of degree 1 (and NOT -1). This convention, which makes the cohomology
diagrams more naturally looking when printed in Macaulay 2, necessitates
the adjustment of degrees in the second half of the programs.

The first of the functions, symExt, takes as input a matrix m with linear
entries, which we think of as a presentation matrix for a positively graded S-
module M = ⊕i≥0Mi, and returns a matrix representing the map M0⊗ωE →
M1 ⊗ ωE which is the first differential of the complex R(M).

i1 : symExt = (m,E) ->(
ev := map(E,ring m,vars E);
mt := transpose jacobian m;
jn := gens kernel mt;
q := vars(ring m)**id_(target m);
ans:= transpose ev(q*jn);
--now correct the degrees:
map(E^{(rank target ans):1}, E^{(rank source ans):0},

ans));



Sheaf Algorithms 7

If M is a module whose presentation is not linear in the sense above, we can
still apply symExt to a high truncation of M :

i2 : S=ZZ/32003[x_0..x_2];

i3 : E=ZZ/32003[e_0..e_2,SkewCommutative=>true];

i4 : M=coker matrix{{x_0^2, x_1^2}};

i5 : m=presentation truncate(regularity M,M);

4 8
o5 : Matrix S <--- S

i6 : symExt(m,E)

o6 = {-1} | e_2 e_1 e_0 0 |
{-1} | 0 e_2 0 e_0 |
{-1} | 0 0 e_2 e_1 |
{-1} | 0 0 0 e_2 |

4 4
o6 : Matrix E <--- E

The function symExt is a quick-and-dirty tool which requires little compu-
tation. If it is called on two successive truncations of a module the maps it
produces may NOT compose to zero because the choice of bases is not con-
sistent. The second function, bgg, makes the computation in such a way that
the bases are consistent, but does more computation to achieve this end. It
takes as input an integer i and a finitely generated graded S-module M , and
returns the ith map in R(M), which is an “adjoint” of the multiplication map
between Mi and Mi+1.

i7 : bgg = (i,M,E) ->(
S :=ring(M);
numvarsE := rank source vars E;
ev:=map(E,S,vars E);
f0:=basis(i,M);
f1:=basis(i+1,M);
g :=((vars S)**f0)//f1;
b:=(ev g)*((transpose vars E)**(ev source f0));
--correct the degrees (which are otherwise
--wrong in the transpose)
map(E^{(rank target b):i+1},E^{(rank source b):i}, b));

For instance, in Example 2.2:

i8 : M=cokernel matrix{{x_0^2, x_1^2, x_2^2}};

i9 : bgg(1,M,E)

o9 = {-2} | e_1 e_0 0 |
{-2} | e_2 0 e_0 |
{-2} | 0 e_2 e_1 |

3 3
o9 : Matrix E <--- E
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3 The Cohomology and the Tate Resolution of a Sheaf

Given a finitely generated graded S-module M we construct a (doubly infi-
nite) E-free complex T(M) with vanishing homology, called the Tate reso-
lution of M , as follows: Let r be the Castelnuovo-Mumford regularity of M .
The truncation T>r(M), the part of T(M) with cohomological degree > r,
is R(M>r). We complete this to an exact complex by adjoining a minimal
projective resolution of the kernel of HomK(E,Mr+1)→ HomK(E,Mr+2).

If, for example, M has finite length as in Example 2.2, the Tate resolution
of M is the complex

· · · → 0→ 0→ 0→ · · · .
At the opposite extreme, take M = S, the free module of rank 1. Since S
has regularity 0, it follows that R(S) is an injective resolution of the residue
field K of E. Applying the exact functor HomK(—,K), and using the fact
that it carries ωE = HomK(E,K) back to E, we see that the Tate resolution
T(S) is the first row of the diagram

· · · // W ∗ ⊗ E // E

��@@@@@@@@
// ωE // W ⊗ ωE // · · ·

K

>>||||||||

Another simple example occurs in the case where M is the homogeneous
coordinate ring of a point p ∈ P(W ). The complex R(M) constructed in
Example 2.3 is periodic, so it may be simply continued to the left, giving

T(M) : · · · a- ωE(i)
a- ωE(i− 1)

a- · · · ,

where again a ∈ V = W ∗ is a non-zero linear functional vanishing on the
linear forms in the ideal of p.

For arbitrary M , by the results of the previous section, R(M>r) has no
homology in cohomological degree > r + 1, so T(M) could be constructed
by a similar recipe from any truncation R(M>s) with s ≥ r. Thus the Tate
resolution depends only on the sheaf M̃ on P(W ) corresponding to M . We
sometimes write T(M) as T(M̃) to emphasize this point.

Using the Macaulay 2 function symExt of the last section, one can com-
pute any finite piece of the Tate resolution.

i10 : tateResolution = (m,E,loDeg,hiDeg)->(
M := coker m;
reg := regularity M;
bnd := max(reg+1,hiDeg-1);
mt := presentation truncate(bnd,M);
o := symExt(mt,E);
--adjust degrees, since symExt forgets them
ofixed := map(E^{(rank target o):bnd+1},

E^{(rank source o):bnd},
o);

res(coker ofixed, LengthLimit=>max(1,bnd-loDeg+1)));
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tateResolution takes as input a presentation matrix m of a finitely gener-
ated graded module M defined over some polynomial ring S = K[x0, . . . , xn]
with variables xi of degree 1, the name of an exterior algebra E with the same
number n + 1 of generators, also supposed to be of degree 1, and two inte-
gers, say l and h. If r is the regularity of M , then tateResolution(m,E,l,h)
computes the piece

T l(M)→ · · · → T max(r+2,h)(M)

of T(M). For instance, for the homogeneous coordinate ring of a point in the
projective plane:

i11 : m = matrix{{x_0,x_1}};

1 2
o11 : Matrix S <--- S

i12 : regularity coker m

o12 = 0

i13 : T = tateResolution(m,E,-2,4)

1 1 1 1 1 1 1
o13 = E <-- E <-- E <-- E <-- E <-- E <-- E

0 1 2 3 4 5 6

o13 : ChainComplex

i14 : betti T

o14 = total: 1 1 1 1 1 1 1
-4: 1 1 1 1 1 1 1

i15 : T.dd_1

o15 = {-4} | e_2 |

1 1
o15 : Matrix E <--- E

For arbitrary M we have Mi = H0M̃(i) for large i, so the correspon-
ding term of the complex T(M̃) with cohomological degree i is Mi ⊗ ωE =
H0(M̃(i)) ⊗ ωE . The following result generalizes this to a description of all
the terms of the Tate resolution, and gives the formula for the cohomology
described in the introduction.

Theorem 3.1 ([18]). Let M be a finitely generated graded S-module. The
term of the complex T(M) = T(M̃) with cohomological degree i is

⊕jHjM̃(i− j)⊗ ωE ,

where HjM̃(i− j) is regarded as a vector space concentrated in degree i− j,
so that the summand HjM̃(i−j)⊗ωE is isomorphic to a direct sum of copies
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of ωE(j − i). Moreover the subquotient complex

· · · → HjM̃(i− j)⊗ ωE → HjM̃(i+ 1− j)⊗ ωE → · · ·

is R(Hj
∗(M̃(−j)))(j) (up to twists and shifts it is R(Hj

∗M̃). ) ut

Thus each cohomology group of each twist of the sheaf M̃ occurs (exactly
once) in a term of T(M). When we compute a part of T(M), we are comput-
ing the sheaf cohomology of various twists of the associated sheaf together
with maps which describe the S-module structure of Hj

∗M̃ in the sense that
the linear maps in this complex are adjoints of the multiplication maps that
determine the module structure (the multiplication maps themselves could
be computed by a function similar to bgg). The higher degree maps in the
complex T(M) determine certain higher cohomology operations, which we
understand only in very special cases (see [19]).

If M = coker m, then betti tateResolution(m,E,l,h) prints the di-
mensions hjM̃(i− j) = dim HjM̃(i− j) for max(r + 2, h) ≥ i ≥ l, where r is
the regularity of M . Truncating the Tate resolution if necessary allows one
to restrict the size of the output.

i16 : sheafCohomology = (m,E,loDeg,hiDeg)->(
T := tateResolution(m,E,loDeg,hiDeg);
k := length T;
d := k-hiDeg+loDeg;
if d > 0 then

chainComplex apply(d+1 .. k, i->T.dd_(i))
else T);

The expression betti sheafCohomology(m,E,l,h) prints a cohomology ta-
ble for M̃ of the form

h0M̃(h) . . . h0M̃(l)
h1M̃(h− 1) . . . h1M̃(l − 1)

...
...

hnM̃(h− n) . . . hnM̃(l − n) .

As a simple example we consider the cotangent bundle on projective 3-space
(see the next section for the Koszul resolution of this bundle):

i17 : S=ZZ/32003[x_0..x_3];

i18 : E=ZZ/32003[e_0..e_3,SkewCommutative=>true];

The cotangent bundle is the cokernel of the third differential of the Koszul
complex on the variables of S.

i19 : m=koszul(3,vars S);

6 4
o19 : Matrix S <--- S
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i20 : regularity coker m

o20 = 2

i21 : betti tateResolution(m,E,-6,2)

o21 = total: 45 20 6 1 4 15 36 70 120 189 280
-4: 45 20 6 . . . . . . . .
-3: . . . 1 . . . . . . .
-2: . . . . . . . . . . .
-1: . . . . 4 15 36 70 120 189 280

i22 : betti sheafCohomology(m,E,-6,2)

o22 = total: 6 1 4 15 36 70 120 189 280
-2: 6 . . . . . . . .
-1: . 1 . . . . . . .
0: . . . . . . . . .
1: . . 4 15 36 70 120 189 280

Of course these two results differ only in the precise point of truncation.

Remark 3.2. There is also a built-in sheaf cohomology function HH in Mac-
aulay 2 which is based on the algorithms in [16]. These algorithms are often
much slower than sheafCohomology. To access it, first execute

M=sheaf coker m;

and pick integers j and d. Then

HH^j(M(>=d))

returns the truncated jth cohomology module Hj
i≥dM̃ . In the above exam-

ple of the cotangent bundle F on projective 3-space we obtain the Koszul
presentation of H1F ∼= K considered as an S-module sitting in degree 0:

i23 : M=sheaf coker m;

i24 : HH^1(M(>=0))

o24 = cokernel | x_3 x_2 x_1 x_0 |

1
o24 : S-module, quotient of S

ut

The Tate resolutions of sheaves are, as the reader may easily check, pre-
cisely the doubly infinite, graded, exact complexes of finitely-generated free
E-modules which are “eventually linear” on the right, in an obvious sense.
What about other doubly exact graded free complexes? For example what if
we take the dual of the Tate resolution of a sheaf? In general it will not be
eventually linear. What is it?

To explain this we must generalize the construction of R(M): If

M• : · · · - M i+1 - M i - M i−1 - · · ·



12 W. Decker and D. Eisenbud

is a complex of S-modules, then applying the functor R gives a complex of
free complexes over E. By changing some signs we get a double complex.
In general the associated total complex is not minimal; but at least if M•

is a bounded complex then, just as one produces the unique minimal free
resolution of a module from any free resolution, we can construct a unique
minimal complex from it. We call this minimal complex R(M•). (See [18] for
more information. This construction is a necessary part of interpreting the
BGG correspondence as an equivalence of derived categories.)

Again if M• is a bounded complex of finitely generated modules, then as
before one shows that R(M•) is exact from a certain point on, and so we can
form the Tate resolution T(M•) by adjoining a free resolution of a kernel.
Once again, the Tate resolution depends only on the bounded complex of
coherent sheaves F• associated to M•, and we write T(F•) = T(M•).

A variant of the theorem of Bernstein, Gel’fand and Gel’fand shows that
every minimal graded doubly infinite exact sequence of finitely generated free
E-modules is of the form T(F•) for some complex of coherent sheaves F•,
unique up to quasi-isomorphism. The terms of the Tate resolution can be
expressed using hypercohomology by a formula like that of Theorem 3.1.

One way that interesting complexes of sheaves arise is through duality.
For simplicity, write O for the structure sheaf OP(W ). If F = M̃ is a sheaf on
P(W ) then the derived functor RHom(F ,O) may be computed by applying
the functor Hom(—,O) to a sheafified free resolution of M ; it’s value is thus
a complex of sheaves rather than an individual sheaf.

We can now identify the dual of the Tate resolution:

Theorem 3.3. HomK(T(F),K) ∼= T(RHom(F ,O))[1]. ut

Here the [1] denotes a shift by one in cohomological degree. For example,
take F = O. We have RHom(O,O) = O. The Tate resolution is given by

T(O) : · · · // E // ωE // · · ·
−1 0

where the number under each term is its cohomological degree. Taking into
account ωE = HomK(E,K), the dual of the Tate resolution is thus

HomK(T(O),K) : · · · ωEoo Eoo · · ·oo

1 0

which is the same as T(O)[1]. A completely analogous computation gives the
proof of Theorem 3.3 if F = O(a) for some a, and the general case follows
by taking free resolutions.

4 Cohomology and Vector Bundles

In this section we first recall how vector bundles, direct sums of line bundles,
and bundles of differentials can be characterized among all coherent sheaves
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on P(W ) in terms of cohomology (as usual we do not distinguish between
vector bundles and locally free sheaves). Then we describe the homomor-
phisms between the suitably twisted bundles of differentials in terms of the
exterior algebra E. This description plays an important role in the context
of Beilinson monads.

Vector bundles on P(W ) are characterized by a criterion of Serre [39]
which can be formulated as follows: A coherent sheaf F on P(W ) is locally
free if and only if its module of sections H0

∗(F) is finitely generated and its
intermediate cohomology modules Hj

∗F , 1 ≤ j ≤ n− 1, are of finite length.
From a cohomological point of view, the simplest vector bundles are the

direct sums of line bundles. Every vector bundle on the projective line splits
into a direct sum of line bundles by Grothendieck’s splitting theorem (see
[37]). Induction yields Horrocks’ splitting theorem (see [5]): A vector bundle
on P(W ) splits into a direct sum of line bundles if and only if its intermediate
cohomology vanishes (originally, this theorem was proved as a corollary to a
more general result, see [23] and [42]).

Just a little bit more complicated are the bundles of differentials. To fix
our notation in this context we writeO = OP(W ), W⊗O for the trivial bundle
on P(W ) with fiber W , U = ΩP(W )(1) for the cotangent bundle twisted by
1, and

U i =
∧i
U =

∧i(ΩP(W )(1)) = ΩiP(W )(i)

for the ith bundle of differentials twisted by i; in particular U0 = O, Un ∼=
O(−1), and U i = 0 if i < 0 or i > n.

Remark 4.1. For each 0 ≤ i ≤ n the pairing

U i ⊗ Un−i ∧−→ Un ∼= O(−1)

induces an isomorphism

Un−i ∼= (U i)∗(−1) . ut

The fiber of U at the point of P(W ) corresponding to the line 〈a〉 ⊂ V is
the subspace (V/〈a〉)∗ ⊂W . Thus U fits into the short exact sequence

0→ U →W ⊗O → O(1)→ 0 .

In fact, U is the tautological subbundle of W ⊗O. Taking exterior powers, we
get the short exact sequences

0→ U i+1 →
∧i+1

W ⊗O → U i ⊗O(1)→ 0 .

Twisting the i
th

sequence by −i − 1, and gluing them together we get the
exact sequence

0 //∧n+1
W ⊗O(−n− 1) // · · · //∧0

W ⊗O //0 .

This sequence is the sheafification of the Koszul complex, which is the free
resolution of the “trivial” graded S-module K = S/(W ).
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Remark 4.2. By taking cohomology in the short exact sequences above we
find that

Hj
∗U

i =

{
K(i) j = i,

0 j 6= i,
1 ≤ i, j ≤ n− 1 ,

where K(i) = (S/(W ))(i). Conversely, every vector bundle F on P(W ) with
this intermediate cohomology is stably equivalent to U i; that is, there exists a
direct sum L of line bundles such that F ∼= U i⊕L. This follows by comparing
the sheafified Koszul complex with the minimal free resolution of the dual
bundle F∗. ut

In what follows we describe the homomorphisms between the various
U i, 0 ≤ i ≤ n. Note that since U = U1 ⊂ W ⊗ O each element of V =
HomK(W,K) induces a homomorphism U1 → U0 which is the composite

U1 ⊂W ⊗O → K ⊗O = O = U0.

Similarly, using the diagonal map of the exterior algebra U i =
∧i

U → U ⊗
U i−1, each element of V induces a homomorphism U i → U i−1 which is the
composite

U i → U ⊗ U i−1 →W ⊗ U i−1 → K ⊗ U i−1 = U i−1.

It is not hard to show that these maps induced by elements of V anticommute
with each other (see for example [17, A2.4.1]). Thus we get maps

∧j
V →

Hom(U i, U i−j) which together give a graded ring homomorphism
∧
V →

Hom(⊕iU i,⊕iU i). In fact this construction gives all the homomorphisms
between the U i:

Lemma 4.3. The maps∧j
V → Hom(U i, U i−j), 0 ≤ i, i− j ≤ n ,

described above are isomorphisms. Under these isomorphisms an element e ∈∧j
V acts by contraction on the fibers of the U i:∧i(V/〈a〉)∗

��

� � // ∧iW
e

��∧i−j(V/〈a〉)∗ � � // ∧i−jW .

Proof. Every homomorphism U i → U i−j lifts uniquely to a homomorphism
between shifted Koszul complexes:

0 //∧n+1
W ⊗O(i− n− 1)

��

// · · · //∧jW ⊗O(i− j)

��

// · · ·

· · · //∧n+1−j
W ⊗O(i− n− 1) // · · · //O(i− j) //0
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Indeed, the corresponding obstructions vanish by Remarks 4.1 and 4.2. All
results follow since the vertical arrows are necessarily given by contraction
with an element in

Hom(
∧j
W ⊗O(i− j),O(i− j)) ∼=

∧j
V . ut

In practical terms, these results say that a map U i e−→ U i−j is represented
as ∧i+1

W ⊗O(−1)

e

��

// // U i

��∧i−j+1
W ⊗O(−1) // // U i−j

if 0 < i− j ≤ i ≤ n, and as the composite

∧i+1
W ⊗O(−1) // // U i

��

� � // ∧iW ⊗O
e

��
U0 = O

if 0 = i− j < i ≤ n.
A map from a sum of copies of various U i to another such sum is given

by a homogeneous matrix over the exterior algebra E. In general it is an
interesting problem to relate properties of the matrix to properties of the
map. Here is one relation which is easy. We will apply it later on in this
chapter.

Proposition 4.4. If

r U i
B−→ sU i−1

is a homomorphism, that is, if B is an s× r-matrix with entries in V , then
the following condition is necessary for B to be surjective: If (b1, . . . , br) is a
non-trivial linear combination of the rows of B, then

dim span(b1, . . . , br) ≥ i+ 1.

Proof. B is surjective if and only if its dual map is injective on fibers:

s
∧i−1(V/〈a〉) ∧B

t

−→ r
∧i(V/〈a〉)

is injective for any line 〈a〉 ⊂ V . Consider a non-trivial linear combination
(b1, . . . , br)t of the columns of Bt, and write d = dim span(b1, . . . , br). If d = i,
then Bt is not injective at any point of P(W ) corresponding to a vector in
span(b1, . . . , br). If d < i, then Bt is not injective at any point of P(W ). ut
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5 Cohomology and Monads

The technique of monads provides powerful tools for problems such as the
construction and classification of coherent sheaves with prescribed invariants.
This section is an introduction to monads. We demonstrate their usefulness,
which is not obvious at first glance, by reviewing the classification of stable
rank 2 vector bundles on the projective plane (see [4], [31], and [26]). Recall
that stable bundles admit moduli (see [22], [33], and [34]).

The basic idea behind monads is to represent arbitrary coherent sheaves
in terms of simpler sheaves such as line bundles or bundles of differentials,
and in terms of homomorphisms between these simpler sheaves. If M is a
finitely generated graded S-module, with associated sheaf F = M̃ , then the
sheafification of the minimal free resolution of M is a monad for F which
involves direct sums of line bundles and thus homogeneous matrices over S.
The Beilinson monad for F , which will be considered in the next section,
involves direct sums of twisted bundles of differentials U i, and thus homoge-
neous matrices over E.

Definition 5.1. A monad on P(W ) is a bounded complex

· · · −→ K−1 −→ K0 −→ K1 −→ · · ·

of coherent sheaves on P(W ) which is exact except at K0. The homology F
at K0 is called the homology of the monad, and the monad is said to be a
monad for F . We say that the type of a monad is determined if the sheaves
Ki are determined. ut

There are different ways of representing a given sheaf as the homology of a
monad, and the type of the monad depends on the way chosen.

When constructing or classifying sheaves in a given class via monads, one
typically proceeds along the following lines.

Step 1. Compute cohomological information which determines the type of
the corresponding monads.
Step 2. Construct or classify the differentials of the monads.

There are no general recipes for either step and some cases require sophisti-
cated ideas and quite a bit of intuition (see Example 7.2 below). If one wants
to classify, say, vector bundles, then a third step is needed:

Step 3. Determine which monads lead to isomorphic vector bundles.

One of the first successful applications of this approach was the classification
of (Gieseker-)stable rank 2 vector bundles with even first Chern class c1 ∈ Z
on the complex projective plane by Barth [4], who detected geometric proper-
ties of the corresponding moduli spaces without giving an explicit description
of the differentials in the second step. The same ideas apply in the case c1
odd which we are going to survey in what follows (see [31], [26], and [37] for
full details and proofs).
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In general, rank 2 vector bundles enjoy properties which are not shared
by all vector bundles.

Remark 5.2. Every rank 2 vector bundle F on P(W ) is self-dual, that is,
it admits a symplectic structure. Indeed, the map

F ⊗ F ∧−→
∧2F ∼= OP(W )(c1)

induces an isomorphism ϕ : F
∼=→ F∗(c1) with ϕ = −ϕ∗(c1) (here c1 is the

first Chern class of F). In particular there are isomorphisms

(HjF(i))∗ ∼= Hn−jF(−i− n− 1− c1)

by Serre duality. ut

We will not give a general definition of stability here. For rank 2 vector
bundles stability can be characterized as follows (see [37]).

Remark 5.3. If F is a rank 2 vector bundle on P(W ), then the following
hold:
(1) F is stable if and only if Hom(F ,F) ∼= K. In this case the symplectic
structure on F is uniquely determined up to scalars.
(2) By tensoring with a line bundle we can normalize F so that its first
Chern class is 0 or −1. In this case F is stable if and only if it has no global
sections. ut

Example 5.4. By the results of the previous section the twisted cotangent
bundle U on the projective plane is a stable rank 2 vector bundle with Chern
classes c1 = −1 and c2 = 1. ut

Remark 5.5. The generalized theorem of Riemann-Roch yields a polyno-
mial in Q[c1, . . . , cr] which gives the Euler characteristic χF =

∑
j(−1)jhjF

for every rank r vector bundle F on P(W ) with Chern classes c1, . . . , cr.
This polynomial can be determined by interpreting the generalized theorem
of Riemann-Roch or by computing the Euler characteristic for enough spe-
cial bundles of rank r (like direct sums of line bundles). For a rank 2 vector
bundle on the projective plane, for example, one obtains

χ(F) = (c21 − 2c2 + 3c1 + 4)/2 . ut

We now focus on stable rank 2 vector bundles on the complex projective
plane P2(C) = P(W ) with first Chern class c1 = −1. Let F be such a bundle.

Remark 5.6. Since F is stable and normalized its second Chern class c2
must be ≥ 1. Indeed,

H2F(i− 2) = H0F(−i) = 0 for i ≥ 0
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by Remarks 5.2 and 5.3, and χ(F(i)) = (i + 1)2 − c2 by Riemann-Roch.
In particular the dimensions hjF(i) in the range −2 ≤ i ≤ 0 are as in the
following cohomology table (a zero is represented by an empty box):

//
i

OO
j

c2 − 1 c2 c2 − 1

−2 −1 0

2

1

0

ut

We abbreviate O = OP2(C) and go through the three steps above.

Step 1. In this step we show that F is the homology of a monad of type

0→ H1F(−2)⊗ U2 → H1F(−1)⊗ U → H1F ⊗O → 0 ,

where the middle term occurs in cohomological degree 0. This actually fol-
lows from the general construction of Beilinson monads presented in the next
chapter and the fact that H2F(i− 2) = H0F(−i) = 0 for 2 ≥ i ≥ 0 (see Re-
mark 5.6). Here we derive the existence of the monad directly with Horrocks’
technique of killing cohomology [24], which requires further cohomological
information. Such information is typically obtained by restricting the given
bundles to linear subspaces. In our case we consider the Koszul complex on
the equations of a point p ∈ P2(C):

0 // O(−2)

(
−x′
x

)
// 2O(−1)

(x x′) // O // Op // 0 .

By tensoring with F(i+1) and taking cohomology we find that H1F generates
H1
≥0 F . Indeed, the composite map(

x x′
)

: 2H1F(i) −→ H1(Jp ⊗F(i+ 1)) −→ H1F(i+ 1)

is surjective if i ≥ −1. In particular, if c2 = 1, then H1F(i) = 0 for i 6=
−1 (apply Serre duality for the twists ≤ −2), so F ∼= U is the twisted
cotangent bundle by Remark 4.2 since both bundles have the same rank and
intermediate cohomology.

If c2 ≥ 2 then H1F 6= 0, and the identity in

Hom(H1F ,H1F) ∼= Ext1(H1F ⊗O,F)

defines an extension

0→ F → G → H1F ⊗O → 0 ,
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where H1
≥0 G = 0, and where G is a vector bundle (apply Serre’s criterion

in Section 4). Similarly, by taking Serre duality into account, we obtain an
extension

0→ H1F(−2)⊗ U2 → H→ F → 0 ,

where H is a vector bundle with H1
≤−2H = 0. The two extensions fit into a

commutative diagram with exact rows and and columns

0

��

0

��
0 // H1F(−2)⊗ U2

||

// H

��

// F //

��

0

0 // H1F(−2)⊗ U2 α // B

β

��

// G

��

// 0

H1F ⊗O

��

= H1F ⊗O

��
0 0

since, for example, the extension in the top row lifts uniquely to an extension
as in the middle row (the obstructions in the corresponding Ext-sequence
vanish). Then B ∼= H1F(−1) ⊗ U since by construction these bundles have
the same rank and intermediate cohomology. What we have is the display of
(the short exact sequences associated to) a monad

0 −→ H1F(−2)⊗ U2 α−→ H1F(−1)⊗ U β−→ H1F ⊗O −→ 0

for F .

Step 2. Our task in this step is to describe what maps α and β could be the
differentials of a monad as above. In fact we give a description in terms of
linear algebra for which it is enough to deal with one of the differentials, say
α, since the self-duality of F and the vanishing of certain obstructions allows
one to represent F as the homology of a “self-dual” monad. Let us abbreviate
A = H1F(−2), B = H1F(−1) and A∗ ∼= H1F . By chasing the displays of a
monad as above and its dual we see that the symplectic structure on F lifts
to a unique isomorphism of monads

0 // A⊗ U2

Φ

��

α // B ⊗ U

Ψ

��

β // A∗ ⊗O //

−Φ∗(−1)

��

0

0 // A⊗O(−1)
β∗(−1)// B∗ ⊗ U∗(−1)

α∗(−1)// A∗ ⊗ (U2)∗(−1) // 0



20 W. Decker and D. Eisenbud

with Ψ = −Ψ∗(−1). Indeed, the corresponding obstructions vanish (see [5]
and [37, II, 4.1] for a discussion of this argument in a general context). Ψ is
the tensor product of an isomorphism q : B → B∗ and a symplectic form
ι ∈ Hom(U,U∗(−1)) ∼= C on U . Note that q is symmetric since −(q ⊗ ι) =
(q ⊗ ι)∗(−1) = q∗ ⊗ ι∗(−1) = −q∗ ⊗ ι. We may and will now assume that F
is the homology of a self-dual monad, where self-dual means that β = αd :=
α∗(−1) ◦ (q ⊗ ι). The monad conditions

(α1) αd ◦ α = 0, and
(α2) α is a vector bundle monomorphism (αd is an epimorphism)

can be rewritten in terms of linear algebra as follows. The identifications in
Lemma 4.3 allow one to view

α ∈ Hom(A⊗ U2, B ⊗ U) ∼= V ⊗Hom(A,B)

as a homomorphism α : W → Hom(A,B) operating by ξ ⊗ (x ∧ x′) →
α(x)(ξ)⊗ x′ −α(x′)(ξ)⊗ x on the fibers of A⊗U2. Similarly we consider αd

as the homomorphism αd : W → Hom(B,A∗), x 7→ α∗(x) ◦ q, operating by
η ⊗ x→ αd(x)(η) on the fibers of B ⊗ U . Then

(α′1) αd(x) ◦ α(x′) = αd(x′) ◦ α(x) for all x, x′ ∈W , and
(α′2) for every ξ ∈ A \ {0} the map W → B, x→ α(x)(ξ) has rank ≥ 2.

Example 5.7. If c2 = 2, then the monads can be written (non-canonically)
as

0 // U2
(ab) // 2U

(a b) // O // 0 ,

where a, b are two vectors in V . In this case (α1) gives no extra condition and
(α2) means that a and b are linearly independent. If a and b are explicitly
given, then we can compute the homology of the monad with the help of
Macaulay 2:

i25 : S = ZZ/32003[x_0..x_2];

U is obtained from the Koszul complex resolving S/(x0, x1, x2) by tensoring
the cokernel of the differential

∧3
W ⊗ S(−3) →

∧2
W ⊗ S(−2) with S(1)

(and sheafifying).

i26 : U = coker koszul(3,vars S) ** S^{1};

For representing α and αd we also need the differential
∧2

W ⊗ S(−2) →
W ⊗ S(−1) of the Koszul complex.

i27 : k2 = koszul(2,vars S)

o27 = {1} | -x_1 -x_2 0 |
{1} | x_0 0 -x_2 |
{1} | 0 x_0 x_1 |

3 3
o27 : Matrix S <--- S
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The expression koszul(2,vars S) computes a matrix representing the dif-
ferential with respect to the monomial bases x0∧x1, x0∧x2, x1∧x2 of

∧2
W

and x0, x1, x2 of W . We pick (a, b) = (e1, e2) and represent the correspond-
ing maps α and αd with respect to the monomial bases (see the discussion
following Lemma 4.3).

i28 : alpha = map(U ++ U, S^{-1}, transpose{{0,-1,0,1,0,0}});

o28 : Matrix

i29 : alphad = map(S^1, U ++ U, matrix{{0,1,0,0,0,1}} * (k2 ++ k2));

o29 : Matrix

Prune computes a minimal presentation.

i30 : F = prune homology(alphad, alpha);

i31 : betti F

o31 = relations : total: 3 1
1: 2 .
2: 1 1

In the next section we will present a more elegant way of computing the
homology of Beilinson monads. ut

We go back to the general case and reverse our construction. Let A and B
be C-vector spaces of the appropriate dimensions, let q be a non-degenerate
quadratic form on B, and let

M̃ = {α ∈ Hom(W,Hom(A,B)) | α satisfies (α′1) and (α′2)} .

Then every α ∈ M̃ defines a self-dual monad as above whose homology is
a stable rank 2 vector bundle on P2(C) with Chern classes c1 = −1 and
c2. In this way we obtain a description of the differentials of the monads
which is not as explicit as we might have hoped (with the exception of the
case c2 = 2). It is, however, enough for detecting geometric properties of the
corresponding moduli spaces.

Step 3. Constructing the moduli spaces means to parametrize the isomor-
phism classes of our bundles in a convenient way. We very roughly out-
line how to do that. Let O(B) be the orthogonal group of (B, q), and let
G := GL(A) × O(B). Then G acts on M̃ by ((Φ, Ψ), α) 7→ ΨαΦ−1, where
ΨαΦ−1(x) := Ψα(x)Φ−1. We may consider an element (Φ, Ψ) ∈ G as an iso-
morphism between the monad defined by α and the monad defined by ΨαΦ−1.
By going back and forth between isomorphisms of bundles and isomorphisms
of monads one shows that the stabilizer of G in each point is {±1}, and that
our construction induces a bijection between the set of isomorphism classes
of stable rank 2 vector bundles on P2(C) with Chern classes c1 = −1 and c2
andM := M̃/G0, where G0 := G/{±1}. With the help of a universal monad
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over P2(C)×M̃ one proves that the analytic structure on M̃ descends to an
analytic structure onM so thatM is smooth of dimension h1F∗⊗F = 4c2−4
in each point (the obstructions for smoothness in the point corresponding to
F lie in H2F∗ ⊗ F which is zero). Moreover the homology of the universal
monad tensored by a suitable line bundle descends to a universal family over
M (here one needs c1 = −1). In other words, M is what one calls a fine
moduli space for our bundles. Further efforts show thatM is irreducible and
rational.

Remark 5.8. Horrocks’ technique of killing cohomology always yields 3-
term monads. In general, the bundle in the middle can be pretty complicated.

ut

6 The Beilinson Monad

We can use the Tate resolution associated to a sheaf to give a construction
of a complex first described by Beilinson [6], which gives a powerful method
for deriving information about a sheaf from information about a few of its
cohomology groups. The general idea is the following:

Suppose that A is an additive category and consider a graded object
⊕n+1
i=0 U

i in A. Given a graded ring homomorphism E → EndA(⊕n+1
i=0 U

i) we
can make an additive functor from the category of free E-modules to A: On
objects we take

ωE(i) 7→

{
U i for 0 ≤ i ≤ n+ 1 and;
0 otherwise.

To define the functor on maps, we use

HomE(ωE(i), ωE(j)) = HomE(E(i), E(j))

= Ej−i −→ End(⊕U i)j−i −→ Hom(U i, U j) .

(Note that we could have taken any twist of E in place of ωE ∼= E(−n− 1);
the choice of ωE is made to simplify the statement of Theorem 6.1, below.)

We shall be interested in the special case where A is the category of
coherent sheaves on P(W ) and where U i = ΩiP(W )(i) as in Section 4. Further

examples may be obtained by taking U i to be the i
th

exterior power of the
tautological subbundle Uk on the Grassmannian of k-planes in W for any k;
the case we have taken here is the case k = n. See [19] for more information
on the general case and applications to the computation of resultants and
more general Chow forms.

Applying the functor just defined to the Tate resolution T(F) of a cohe-
rent sheaf F on P(W ), and using Theorem 3.1, we get a complex

Ω(F) : · · · - ⊕j HjF(i− j)⊗ U j−i - . . . ,
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where the term we have written down occurs in cohomological degree i. The
resolution T(F) is well-defined up to homotopy, so the same is true of Ω(F).
Since Uk = 0 unless 0 ≤ k ≤ n the only cohomology groups of F that are
actually involved in Ω(F) are HjF(k) with −n ≤ k ≤ 0; Ω(F) is of type

0 //H0F(−n)⊗ Un

||

// · · · // ⊕nj=0 HjF(−j)⊗ U j

||

// · · · //HnF ⊗ U0

||

//0

0 //Ω−n(F) // · · · //Ω0(F) // · · · //Ωn(F) //0 .

For applications it is important to note that instead of working with Ω(F)
one can also work with Ω(F(i)) for some twist i. This gives one some freedom
in choosing the cohomology groups of F to be involved.

To see a simple example, consider again the structure sheaf Op of the
subvariety consisting of a point p ∈ P(W ). Write I for the homogeneous ideal
of p, and let a ∈ V = W ∗ be a non-zero functional vanishing on the linear
forms in I as before. The Tate resolution of the homogeneous coordinate ring
S/I has already been computed, and we have seen that it depends only on
the sheaf S̃/I = Op. From the computation of T(S/I) = T(Op) made in
Section 3 we see that Ω(Op) takes the form

Ω(Op) : 0→ Un
a- Un−1 a- · · · a- U1 a- U0 - 0 ,

with U i in cohomological degree −i.
We have already noted that the map a : U = U1 - U0 = OP(W ) is

the composite of the tautological embedding U ⊂W ⊗OP(W ) with the map
a ⊗ 1 : W ⊗ OP(W ) → OP(W ). Thus the image of a : U1 → OP(W ) is the
ideal sheaf of p, and we see that the homology of the complex Ω(Op) at U0

is Op. One can check further that Ω(Op) is the Koszul complex associated
with the map a : U1 → OP(W ), and it follows that the homology of Ω(Op)
at U i is 0 for i > 0. The following result shows that this is typical.

Theorem 6.1 ([18]). If F is a coherent sheaf on P(W ), then the only non-
vanishing homology of the complex Ω(F) is

H0(Ω(F)) = F . ut

The existence of a complex satisfying the theorem and having the same
terms as Ω(F) was first asserted by Beilinson in [6], and thus we will call
Ω(F) a Beilinson monad for F . Existence proofs via a somewhat less effective
construction than the one given here may be found in [28] and [2].

The explicitness of the construction via Tate resolutions allows one to
detect properties of the differentials of Beilinson monads. Let us write

d
(r)
ij ∈ Hom(HjF(i− j)⊗ U j−i,Hj−r+1F(i− j + r)⊗ U j−i−r)

∼=
∧r
V ⊗Hom(HjF(i− j),Hj−r+1F(i− j + r))

∼= Hom(
∧r
W ⊗HjF(i− j),Hj−r+1F(i− j + r))
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for the degree r maps actually occurring in Ω(F).

Remark 6.2. The constant maps d(0)
ij in Ω(F) are zero since T(F) is mini-

mal. ut

Proposition 6.3 ([18]). The linear maps d(1)
ij in Ω(F) correspond to the

multiplication maps

W ⊗HjF(i− j)→ HjF(i− j + 1) . ut

This follows from the identification of the linear strands in T(F) (see the
discussion following Theorem 3.1). The higher degree maps in T(F) and
Ω(F), however, are not yet well-understood.

Since (T(F))[1] = T(F(1)) we can compare the differentials in Ω(F) with
those in Ω(F(1)):

Proposition 6.4 ([18]). If the maps d(r)
ij in Ω(F) and d

(r)
i−1,j in Ω(F(1))

both actually occur, then they correspond to the same element in∧r
V ⊗Hom(HjF(i− j),Hj−r+1F(i− j + r)) . ut

In what follows we present some Macaulay 2 code for computing Beilinson
monads. Our functions sortedBasis, beilinson1, U, and beilinson reflect
what we did in Example 5.7 .

The expression sortedBasis(i,E) sorts the monomials of degree i in E to
match the order of the columns of koszul(i,vars S), where our conventions
with respect to S and E are as in Section 2, and where we suppose that the
monomial order on E is reverse lexicographic, the Macaulay 2 default order.

i32 : sortedBasis = (i,E) -> (
m := basis(i,E);
p := sortColumns(m,MonomialOrder=>Descending);
m_p);

For example:

i33 : S=ZZ/32003[x_0..x_3];

i34 : E=ZZ/32003[e_0..e_3,SkewCommutative=>true];

i35 : koszul(2,vars S)

o35 = {1} | -x_1 -x_2 0 -x_3 0 0 |
{1} | x_0 0 -x_2 0 -x_3 0 |
{1} | 0 x_0 x_1 0 0 -x_3 |
{1} | 0 0 0 x_0 x_1 x_2 |

4 6
o35 : Matrix S <--- S
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i36 : sortedBasis(2,E)

o36 = | e_0e_1 e_0e_2 e_1e_2 e_0e_3 e_1e_3 e_2e_3 |

1 6
o36 : Matrix E <--- E

If e ∈ E is homogeneous of degree j, then beilinson1(e,j,i,S) computes
the map U i

e−→ U i−j on Pn = ProjS. If 0 < i − j ≤ i ≤ n, then the result
is a matrix representing the map

∧i+1
W ⊗ S(−1) e⊗1−→

∧i−j+1
W ⊗ S(−1)

defined by contraction with e. If 0 = i− j < i ≤ n, then the result is a matrix
representing the composite of the map

∧i
W ⊗ S

e⊗1−→ S with the Koszul
differential

∧i+1
W ⊗S(−1)→

∧i
W ⊗S. Note that the degrees of the result

are not set correctly since the functions U and beilinson below are supposed
to do that.

i37 : beilinson1=(e,dege,i,S)->(
E := ring e;
mi := if i < 0 or i >= numgens E then map(E^1, E^0, 0)

else if i === 0 then id_(E^1)
else sortedBasis(i+1,E);

r := i - dege;
mr := if r < 0 or r >= numgens E then map(E^1, E^0, 0)

else sortedBasis(r+1,E);
s = numgens source mr;
if i === 0 and r === 0 then

substitute(map(E^1,E^1,{{e}}),S)
else if i>0 and r === i then substitute(e*id_(E^s),S)
else if i > 0 and r === 0 then

(vars S) * substitute(contract(diff(e,mi),transpose mr),S)
else substitute(contract(diff(e,mi), transpose mr),S));

For example:

i38 : beilinson1(e_1,1,3,S)

o38 = {-3} | 0 |
{-3} | 0 |
{-3} | 1 |
{-3} | 0 |

4 1
o38 : Matrix S <--- S

i39 : beilinson1(e_1,1,2,S)

o39 = {-2} | 0 0 0 0 |
{-2} | -1 0 0 0 |
{-2} | 0 0 0 0 |
{-2} | 0 -1 0 0 |
{-2} | 0 0 0 0 |
{-2} | 0 0 0 1 |

6 4
o39 : Matrix S <--- S

i40 : beilinson1(e_1,1,1,S)

o40 = | x_0 0 -x_2 0 -x_3 0 |
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1 6
o40 : Matrix S <--- S

The function U computes the bundles U i on ProjS:

i41 : U = (i,S) -> (
if i < 0 or i >= numgens S then S^0
else if i === 0 then S^1
else cokernel koszul(i+2,vars S) ** S^{i});

Finally, if o : ⊕E(−ai) → ⊕E(−bj) is a homogeneous matrix over E, then
beilinson(o,S) computes the corresponding map o : ⊕Uai → ⊕U bj on
ProjS by calling beilinson1 and U.

i42 : beilinson = (o,S) -> (
coldegs := degrees source o;
rowdegs := degrees target o;
mats = table(numgens target o, numgens source o,

(r,c) -> (
rdeg = first rowdegs#r;
cdeg = first coldegs#c;
overS = beilinson1(o_(r,c),cdeg-rdeg,cdeg,S);
-- overS = substitute(overE,S);
map(U(rdeg,S),U(cdeg,S),overS)));

if #mats === 0 then matrix(S,{{}})
else matrix(mats));

With these functions the code in Example 5.7 can be rewritten as follows:

i43 : S=ZZ/32003[x_0..x_2];

i44 : E = ZZ/32003[e_0..e_2,SkewCommutative=>true];

i45 : alphad = map(E^1,E^{-1,-1},{{e_1,e_2}})

o45 = | e_1 e_2 |

1 2
o45 : Matrix E <--- E

i46 : alpha = map(E^{-1,-1},E^{-2},{{e_1},{e_2}})

o46 = {1} | e_1 |
{1} | e_2 |

2 1
o46 : Matrix E <--- E

i47 : alphad=beilinson(alphad,S);

o47 : Matrix

i48 : alpha=beilinson(alpha,S);

o48 : Matrix

i49 : F = prune homology(alphad,alpha);

i50 : betti F

o50 = relations : total: 3 1
1: 2 .
2: 1 1
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7 Examples

In this section we give two examples of explicit constructions of Beilinson
monads over P4(C) = P(W ) and of classification results based on these
monads. As in Section 5 we proceed in three steps. Let us write O = OP4(C).

Example 7.1. Our first example is taken from the classification of conic
bundles in P4(C), that is, of smooth surfaces X ⊂ P4(C) which are ruled in
conics in the sense that there exists a surjective morphism π : X → C onto a
smooth curve C such that the general fiber of π is a smooth conic in the given
embedding of X. There are precisely three families of such surfaces (see [20]
and [9]). Two families, the Del Pezzo surfaces of degree 4 and the Castelnuovo
surfaces, are classical. The third family, consisting of elliptic conic bundles
(conic bundles over an elliptic curve) of degree 8, had been falsely ruled out
in two classification papers in the 1980’s (see [36] and [27]). Only recently
Abo, Decker, and Sasakura [1] constructed and classified such surfaces by
considering the Beilinson monads for the suitably twisted ideal sheaves of
the surfaces. Let us explain how this works.
Step 1. In this step we suppose that an elliptic conic bundle X as above
exists, and we determine the type of the Beilinson monad for the suitably
twisted ideal sheaf JX . We know from the classification of smooth surfaces
in P4(C) which are contained in a cubic hypersurface (see [38] and [3]) that
H0JX(i) = 0 for i ≤ 3. It follows from general results such as the theorem
of Riemann-Roch that the dimensions hjJX(i) in range −2 ≤ i ≤ 3 are as
follows (here, again, a zero is represented by an empty box):

//
i

OO j

8 4

1 1 a b

a+ 1 b+ 1

−2 −1 0 1 2 3

4

3

2

1

0

with a := h2JX(2) and b := h2JX(3) still to be determined. The Beilinson
monad for JX(2) is thus of type

0→ 8O(−1)→ 4U3 ⊕ U2 → U ⊕ (a+ 1)O → aO → 0 ,

where (a+ 1)O → aO is the zero map (see Remark 6.2), and where conse-
quently U is mapped surjectively onto aO . By Proposition 4.4 this is only
possible if a = 0. The same idea applied to JX(3) shows that then also b = 0.
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The cohomological information obtained so far determines the type of
the Beilinson monad for JX(2) and for JX(3). We decide to concentrate on
the monad for JX(3) since its differentials are smaller in size than those of
the monad for JX(2). In order to ease our calculations further we kill the
4-dimensional space H3JX(−1). Let us write ωX for the dualizing sheaf of
X. Serre duality on P4(C) respectively on X yields canonical isomorphisms

Z := Ext1(JX(−1),O(−5))
∼= (H3JX(−1))∗ ∼= (H2OX(−1))∗ ∼= H0(ωX(1)) .

The identity in

Hom(Z,Z) ∼= Ext1(JX(−1), Z∗ ⊗O(−5))

defines an extension which, twisted by 4, can be written as

0→ 4O(−1)→ G → JX(3)→ 0 .

Let us show that G is a vector bundle. We know from the classification of
scrolls in P4(C) (see [30] and [3]) that X is not a scroll. Hence adjunction
theory implies that ωX(1) is generated by the adjoint linear system H0(ωX(1))
(see [7, Corollary 9.2.2]). It follows by Serre’s criterion ([39], see also [35,
Theorem 2.2]) that G is locally free. By construction G has a cohomology
table as follows:

//
i

OO j

1 1

1 1

−4 −3 −2 −1 0

4

3

2

1

0

So the Beilinson monad of G is of type

0→ U3 α→ U2 ⊕ U β→ O → 0 .

Step 2. Now we proceed the other way around. We show that a rank 5 bundle
G as in the first step exists, and that the dependency locus of four general
sections of G(1) is a surface of the desired type. Differentials which define a
monad as above with a locally free homology can be easily found. By Lemma
4.3 α corresponds to a pair of vectors α = (α1, α2)t ∈ V ⊕

∧2
V . By dualizing

(see Remark 4.1) we find that it is a vector bundle monomorphism if and only
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if U2 ⊕ U3 αt−→ U1 is an epimorphism. Equivalently, α1 is non-zero and α2

considered as a vector in
∧2(V/〈α1〉) is indecomposable (argue as in the proof

of Proposition 4.4). Taking the other monad conditions into account we see
that we may pick

α =
(

e4

e0 ∧ e2 + e1 ∧ e3

)
and

β =
(
e0 ∧ e2 + e1 ∧ e3 , −e4

)
,

where e0, . . . , e4 is a basis of V , and that up to isomorphisms of monads
and up to the choice of the basis this is the only possibility. We fix G as the
homology of this monad and compute the syzygies of G with Macaulay 2.

i51 : S = ZZ/32003[x_0..x_4];

i52 : E = ZZ/32003[e_0..e_4,SkewCommutative=>true];

i53 : beta=map(E^1,E^{-2,-1},{{e_0*e_2+e_1*e_3,-e_4}})

o53 = | e_0e_2+e_1e_3 -e_4 |

1 2
o53 : Matrix E <--- E

i54 : alpha=map(E^{-2,-1},E^{-3},{{e_4},{e_0*e_2+e_1*e_3}})

o54 = {2} | e_4 |
{1} | e_0e_2+e_1e_3 |

2 1
o54 : Matrix E <--- E

i55 : beta=beilinson(beta,S);

o55 : Matrix

i56 : alpha=beilinson(alpha,S);

o56 : Matrix

i57 : G = prune homology(beta,alpha);

i58 : betti res G

o58 = total: 10 9 5 1
1: 10 4 1 .
2: . 5 4 1

We see in particular that G(1) is globally generated. Hence the dependency
locus of four general sections of G(1) is indeed a smooth surface in P4(C) by
Kleiman’s Bertini-type result [29]. The smoothness can also be checked with
Macaulay 2 in an example via the built-in Jacobian criterion (see [15] for a
speedier method).
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i59 : foursect = random(S^4, S^10) * presentation G;

4 9
o59 : Matrix S <--- S

The function trim computes a minimal presentation.

i60 : IX = trim minors(4,foursect);

o60 : Ideal of S

i61 : codim IX

o61 = 2

i62 : degree IX

o62 = 8

i63 : codim singularLocus IX

o63 = 5

By construction X has the correct invariants and is in fact an elliptic conic
bundle as claimed: Since the adjoint linear system H0(ωX(1)) is base point
free and 4-dimensional by what has been said in the first step, the correspond-
ing adjunction map X → P3 is a morphism which exhibits, as is easy to see,
X as a conic bundle over a smooth elliptic curve in P3 (see [1, Proposition
2.1]).
Step 3. Our discussion in the previous steps gives also a classification result.
Up to projectivities the elliptic conic bundles of degree 8 in P4(C) are pre-
cisely the smooth surfaces arising as the dependency locus of four sections of
the bundle G(1) fixed in Step 2. ut

Example 7.2. This example is concerned with the construction and classi-
fication of abelian surfaces in P4(C), and with the closely related Horrocks-
Mumford bundles [25].
Step 1. Horrocks and Mumford found evidence for the existence of a family
of abelian surfaces in P4(C). Suppose that such a surface X exists. Then
the dualizing sheaf of X is trivial, ωX ∼= OX , and X has degree 10 (see
[21, Example 3.2.15]). The same arguments as in Example 7.1 show that X
arises as the zero scheme of a section of a rank 2 vector bundle: There is an
extension

0→ O → F(3)→ JX(5)→ 0 ,

where F(3) is a rank 2 vector bundle with Chern classes c1 = 5 and c2 =
degX = 10, and where F has a cohomology table as displayed in Figure 1.
In particular F , which has Chern classes c1 = −1 and c2 = 4, is stable by
Remark 5.3. A discussion as in Section 5 shows that the Beilinson monad for
F is of type

0 // A⊗O(−1) α // B ⊗ U2 αd // A∗ ⊗O // 0 ,
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//
i

OO j

5

2

5

−4 −3 −2 −1 0

4

3

2

1

0

Fig. 1.

with C-vector spaces A and B of dimension 5 and 2 respectively, and with
αd = α∗(−1) ◦ (q ⊗ ι), where q is a symplectic form on B, and where ι :
U2

∼=−→ (U2)∗(−1) is induced by the pairing U2 ⊗ U2 ∧−→ U4 ∼= O(−1). By
choosing appropriate bases of A and B we may suppose that α is a 2 × 5

matrix with entries in
∧2

V and that αd = αt ·
(

0 1
−1 0

)
.

Step 2. As in Example 7.1 we now proceed the other way around. But this
time it is not obvious how to define α. Horrocks and Mumford remark that
up to projectivities one may suppose that the abelian surfaces in P4(C) are
invariant under the action of the Heisenberg group H5 in its Schrödinger rep-
resentation, and they use the representation theory of H5 and its normalizer
N5 in SL(5,C) to find

α =
(
e2 ∧ e3 e3 ∧ e4 e4 ∧ e0 e0 ∧ e1 e1 ∧ e2

e1 ∧ e4 e2 ∧ e0 e3 ∧ e1 e4 ∧ e2 e0 ∧ e3

)
,

where e0, . . . , e4 is a basis of V . A straightforward computation shows that
with this α the desired monad conditions are indeed satisfied. The resulting
Horrocks-Mumford bundle FHM on P4(C) is essentially the only rank 2 vector
bundle known on Pn(C), n ≥ 4, which does not split as direct sum of two
line bundles. Let us compute the syzygies of FHM with Macaulay 2.

i64 : alphad = matrix{{e_4*e_1, e_2*e_3},{e_0*e_2, e_3*e_4},
{e_1*e_3, e_4*e_0},{e_2*e_4, e_0*e_1},
{e_3*e_0, e_1*e_2}};

5 2
o64 : Matrix E <--- E

i65 : alphad=map(E^5,E^{-2,-2},alphad)

o65 = | -e_1e_4 e_2e_3 |
| e_0e_2 e_3e_4 |
| e_1e_3 -e_0e_4 |
| e_2e_4 e_0e_1 |
| -e_0e_3 e_1e_2 |
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5 2
o65 : Matrix E <--- E

i66 : alpha=syz alphad

o66 = {2} | e_2e_3 e_0e_4 e_1e_2 -e_3e_4 e_0e_1 |
{2} | e_1e_4 e_1e_3 e_0e_3 e_0e_2 -e_2e_4 |

2 5
o66 : Matrix E <--- E

i67 : alphad=beilinson(alphad,S);

o67 : Matrix

i68 : alpha=beilinson(alpha,S);

o68 : Matrix

i69 : FHM = prune homology(alphad,alpha);

i70 : betti res FHM

o70 = total: 19 35 20 2
3: 4 . . .
4: 15 35 20 .
5: . . . 2

i71 : regularity FHM

o71 = 5

i72 : betti sheafCohomology(presentation FHM,E,-6,6)

o72 = total: 210 100 37 14 10 5 2 5 10 14 37 100 210
-6: 210 100 35 4 . . . . . . . . .
-5: . . 2 10 10 5 . . . . . . .
-4: . . . . . . 2 . . . . . .
-3: . . . . . . . 5 10 10 2 . .
-2: . . . . . . . . . 4 35 100 210

Since H0FHM(i) = 0 for i < 3 every non-zero section of FHM(3) vanishes
along a surface (with the desired invariants). Horrocks and Mumford need
an extra argument to show that the general such surface is smooth (and thus
abelian) since Kleiman’s Bertini-type result does not apply (FHM(3) is not
globally generated). Our explicit construction allows one again to check the
smoothness with Macaulay 2 in an example.

i73 : sect = map(S^1,S^15,0) | random(S^1, S^4);

1 19
o73 : Matrix S <--- S

We compute the equations of X via a mapping cone.

i74 : mapcone = sect || transpose presentation FHM;

36 19
o74 : Matrix S <--- S

i75 : fmapcone = res coker mapcone;
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i76 : IX = trim ideal fmapcone.dd_2;

o76 : Ideal of S

i77 : codim IX

o77 = 2

i78 : degree IX

o78 = 10

i79 : codim singularLocus IX

o79 = 5

Step 3. Horrocks and Mumford showed that up to projectivities every abelian
surface in P4(C) arises as the zero scheme of a section of FHM(3). In fact, one
can show much more. By a careful analysis of possible Beilinson monads and
their restrictions to various linear subspaces Decker [12] proved that every
stable rank 2 vector bundle F on P4(C) with Chern classes c1 = −1 and
c2 = 4 is the homology of a monad of the type as in Step 1. From geometric
properties of the “variety of unstable planes” of F Decker and Schreyer [14]
deduced that up to isomorphisms and projectivities the differentials of the
monad coincide with those of FHM. Together with results from [11] this im-
plies that the moduli space of our bundles is isomorphic to the homogeneous
space SL(5,C)/N5. ut
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