
Data Types, Functions, and Programming

Daniel R. Grayson? and Michael E. Stillman??

In this chapter we present an introduction to the structure of Macaulay 2
commands and the writing of functions in the Macaulay 2 language. For
further details see the Macaulay 2 manual distributed with the program [1].

1 Basic Data Types

The basic data types of Macaulay 2 include numbers of various types (in-
tegers, rational numbers, floating point numbers, complex numbers), lists
(basic lists, and three types of visible lists, depending on the delimiter used),
hash tables, strings of characters (both 1-dimensional and 2-dimensional),
Boolean values (true and false), symbols, and functions. Higher level types
useful in mathematics are derived from these basic types using facilities pro-
vided in the Macaulay 2 language. Except for the simplest types (integers
and Boolean values), Macaulay 2 normally displays the type of the output
value on a second labeled output line.

Symbols have a name which consists of letters, digits, or apostrophes, the
first of which is a letter. Values can be assigned to symbols and recalled later.

i1 : w

o1 = w

o1 : Symbol

i2 : w = 2^100

o2 = 1267650600228229401496703205376

i3 : w

o3 = 1267650600228229401496703205376

Multiple values can be assigned in parallel.
i4 : (w,w’) = (33,44)

o4 = (33, 44)

o4 : Sequence

i5 : w

o5 = 33

i6 : w’

o6 = 44

? Supported by NSF grant DMS 99-70085.
?? Supported by NSF grant 99-70348.

2 D. R. Grayson and M. E. Stillman

Comments are initiated by -- and extend to the end of the line.
i7 : (w,w’) = (33, -- this is a comment

44)

o7 = (33, 44)

o7 : Sequence

Strings of characters are delimited by quotation marks.
i8 : w = "abcdefghij"

o8 = abcdefghij

They may be joined horizontally to make longer strings, or vertically to make
a two-dimensional version called a net.

i9 : w | w

o9 = abcdefghijabcdefghij

i10 : w || w

o10 = abcdefghij
abcdefghij

Nets are used in the preparation of two dimensional output for polynomials.
Floating point numbers are distinguished from integers by the presence

of a decimal point, and rational numbers are entered as fractions.
i11 : 2^100

o11 = 1267650600228229401496703205376

i12 : 2.^100

o12 = 1.26765 10^30

o12 : RR

i13 : (36 + 1/8)^6

582622237229761
o13 = ---------------

262144

o13 : QQ

Parentheses, braces, and brackets are used as delimiters for the three types
of visible lists: lists, sequences, and arrays.

i14 : x1 = {1,a}

o14 = {1, a}

o14 : List

i15 : x2 = (2,b)

o15 = (2, b)

o15 : Sequence

i16 : x3 = [3,c,d,e]

o16 = [3, c, d, e]

o16 : Array

Data Types, Functions, and Programming 3

Even though they use braces, lists should not be confused with sets, which
will be treated later. A double period can be used to construct a sequence of
consecutive elements in various contexts.

i17 : 1 .. 6

o17 = (1, 2, 3, 4, 5, 6)

o17 : Sequence

i18 : a .. f

o18 = (a, b, c, d, e, f)

o18 : Sequence

Lists can be nested.
i19 : xx = {x1,x2,x3}

o19 = {{1, a}, (2, b), [3, c, d, e]}

o19 : List

The number of entries in a list is provided by #.
i20 : #xx

o20 = 3

The entries in a list are numbered starting with 0, and can be recovered with
used as a binary operator.

i21 : xx#0

o21 = {1, a}

o21 : List

i22 : xx#0#1

o22 = a

o22 : Symbol

We can join visible lists and append or prepend an element to a visible list.
The output will be the same type of visible list that was provided in the
input: a list, a sequence, or an array; if the arguments are various types of
lists, the output will be same type as the first argument.

i23 : join(x1,x2,x3)

o23 = {1, a, 2, b, 3, c, d, e}

o23 : List

i24 : append(x3,f)

o24 = [3, c, d, e, f]

o24 : Array

4 D. R. Grayson and M. E. Stillman

i25 : prepend(f,x3)

o25 = [f, 3, c, d, e]

o25 : Array

Use sum or product to produce the sum or product of all the elements in a
list.

i26 : sum {1,2,3,4}

o26 = 10

i27 : product {1,2,3,4}

o27 = 24

2 Control Structures

Commands for later execution are encapsulated in functions. A function is
created using the operator -> to separate the parameter or sequence of pa-
rameters from the code to be executed later. Let’s try an elementary example
of a function with two arguments.

i28 : f = (x,y) -> 1000 * x + y

o28 = f

o28 : Function

The parameters x and y are symbols that will acquire a value later when the
function is executed. They are local in the sense that they are completely
different from any symbols with the same name that occur elsewhere. Ad-
ditional local variables for use within the body of a function can be created
by assigning a value to them with := (first time only). We illustrate this by
rewriting the function above.

i29 : f = (x,y) -> (z := 1000 * x; z + y)

o29 = f

o29 : Function

Let’s apply the function to some arguments.
i30 : f(3,7)

o30 = 3007

The sequence of arguments can be assembled first, and then passed to the
function.

i31 : s = (3,7)

o31 = (3, 7)

o31 : Sequence

Data Types, Functions, and Programming 5

i32 : f s

o32 = 3007

As above, functions receiving one argument may be called without parenthe-
ses.

i33 : sin 2.1

o33 = 0.863209

o33 : RR

A compact notation for functions makes it convenient to apply them without
naming them first. For example, we may use apply to apply a function to
every element of a list and to collect the results into a list.

i34 : apply(1 .. 10, i -> i^3)

o34 = (1, 8, 27, 64, 125, 216, 343, 512, 729, 1000)

o34 : Sequence

The function scan will do the same thing, but discard the results.
i35 : scan(1 .. 5, print)
1
2
3
4
5

Use if ... then ... else ... to perform alternative actions based on the
truth of a condition.

i36 : apply(1 .. 10, i -> if even i then 1000*i else i)

o36 = (1, 2000, 3, 4000, 5, 6000, 7, 8000, 9, 10000)

o36 : Sequence

A function can be terminated prematurely with return.
i37 : apply(1 .. 10, i -> (if even i then return 1000*i; -i))

o37 = (-1, 2000, -3, 4000, -5, 6000, -7, 8000, -9, 10000)

o37 : Sequence

Loops in a program can be implemented with while ... do
i38 : i = 1; while i < 50 do (print i; i = 2*i)
1
2
4
8
16
32

Another way to implement loops is with for and do or list, with optional
clauses introduced by the keywords from, to, and when.

i40 : for i from 1 to 10 list i^3

o40 = {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}

o40 : List

6 D. R. Grayson and M. E. Stillman

i41 : for i from 1 to 4 do print i
1
2
3
4

A loop can be terminated prematurely with break, which accepts an optional
value to return as the value of the loop expression.

i42 : for i from 2 to 100 do if not isPrime i then break i

o42 = 4

If no value needs to be returned, the condition for continuing can be provided
with the keyword when; iteration continues only as long as the predicate
following the keyword returns true.

i43 : for i from 2 to 100 when isPrime i do print i
2
3

3 Input and Output

The function print can be used to display something on the screen.
i44 : print 2^100
1267650600228229401496703205376

For example, it could be used to display the elements of a list on separate
lines.

i45 : (1 .. 5) / print;
1
2
3
4
5

The operator << can be used to display something on the screen, without the
newline character.

i46 : << 2^100
1267650600228229401496703205376
o46 = stdio

o46 : File

-- the standard input output file

Notice the value returned is a file. A file in Macaulay 2 is a data type that
represents a channel through which data can be passed, as input, as output,
or in both directions. The file stdio encountered above corresponds to your
shell window or terminal, and is used for two-way communication between
the program and the user. A file may correspond to what one usually calls
a file, i.e., a sequence of data bytes associated with a given name and stored
on your disk drive. A file may also correspond to a socket, a channel for
communication with other programs over the network.

Files can be used with the binary form of the operator << to display
something else on the same line.

Data Types, Functions, and Programming 7

i47 : << "the value is : " << 2^100
the value is : 1267650600228229401496703205376
o47 = stdio

o47 : File

-- the standard input output file

Using endl to represent the new line character or character sequence, we can
produce multiple lines of output.

i48 : << "A = " << 2^100 << endl << "B = " << 2^200 << endl;
A = 1267650600228229401496703205376
B = 1606938044258990275541962092341162602522202993782792835301376

We can send the same output to a disk file named foo, but we must remember
to close it with close.

i49 : "foo" << "A = " << 2^100 << endl << close

o49 = foo

o49 : File

The contents of the file can be recovered as a string with get.
i50 : get "foo"

o50 = A = 1267650600228229401496703205376

If the file contains valid Macaulay 2 commands, as it does in this case, we
can execute those commands with load.

i51 : load "foo"

We can verify that the command took effect by evaluating A.
i52 : A

o52 = 1267650600228229401496703205376

Alternatively, if we want to see those commands and the output they produce,
we may use input.

i53 : input "foo"

i54 : A = 1267650600228229401496703205376

o54 = 1267650600228229401496703205376

i55 :

Let’s set up a ring for computation in Macaulay 2.
i56 : R = QQ[x,y,z]

o56 = R

o56 : PolynomialRing

i57 : f = (x+y)^3

3 2 2 3
o57 = x + 3x y + 3x*y + y

o57 : R

8 D. R. Grayson and M. E. Stillman

Printing, and printing to files, works for polynomials, too.
i58 : "foo" << f << close;

The two-dimensional output is readable by humans, but is not easy to convert
back into a polynomial.

i59 : get "foo"

o59 = 3 2 2 3
x + 3x y + 3x*y + y

Use toString to create a 1-dimensional form of the polynomial that can be
stored in a file in a format readable by Macaulay 2 and by other symbolic
algebra programs, such as Mathematica or Maple.

i60 : toString f

o60 = x^3+3*x^2*y+3*x*y^2+y^3

Send it to the file.
i61 : "foo" << toString f << close;

Get it back.
i62 : get "foo"

o62 = x^3+3*x^2*y+3*x*y^2+y^3

Convert the string back to a polynomial with value, using oo to recover the
value of the expression on the previous line.

i63 : value oo

3 2 2 3
o63 = x + 3x y + 3x*y + y

o63 : R

The same thing works for matrices, and a little more detail is provided by
toExternalString, if needed.

i64 : vars R

o64 = | x y z |

1 3
o64 : Matrix R <--- R

i65 : toString vars R

o65 = matrix {{x, y, z}}

i66 : toExternalString vars R

o66 = map(R^{{0}}, R^{{-1}, {-1}, {-1}}, {{x, y, z}})

4 Hash Tables

Recall how one sets up a quotient ring for computation in Macaulay 2.

Data Types, Functions, and Programming 9

i67 : R = QQ[x,y,z]/(x^3-y)

o67 = R

o67 : QuotientRing

i68 : (x+y)^4

2 2 3 4 2
o68 = 6x y + 4x*y + y + x*y + 4y

o68 : R

How does Macaulay 2 represent a ring like R in the computer? To answer
that, first think about what sort of information needs to be retained about
R. We may need to remember the coefficient ring of R, the names of the
variables in R, the monoid of monomials in the variables, the degrees of the
variables, the characteristic of the ring, whether the ring is commutative,
the ideal modulo which we are working, and so on. We also may need to
remember various bits of code: the code for performing the basic arithmetic
operations, such as addition and multiplication, on elements of R; the code for
preparing a readable representation of an element of R, either 2-dimensional
(with superscripts above the line and subscripts below), or 1-dimensional.
Finally, we may want to remember certain things that take a lot of time to
compute, such as the Gröbner basis of the ideal.

A hash table is, by definition, a way of representing (in the computer)
a function whose domain is a finite set. In Macaulay 2, hash tables are ex-
tremely flexible: the elements of the domain (or keys) and the elements of the
range (or values) of the function may be any of the other objects represented
in the computer. It’s easy to come up with uses for functions whose domain
is finite: for example, a monomial can be represented by the function that as-
sociates to a variable its nonzero exponent; a polynomial can be represented
by a function that associates to a monomial its nonzero coefficient; a set can
be represented by any function with that set as its domain; a (sparse) ma-
trix can be represented as a function from pairs of natural numbers to the
corresponding nonzero entry.

Let’s create a hash table and name it.
i69 : f = new HashTable from { a=>444, Daniel=>555, {c,d}=>{1,2,3,4}}

o69 = HashTable{{c, d} => {1, 2, 3, 4}}
a => 444
Daniel => 555

o69 : HashTable

The operator => is used to represent a key-value pair. We can use the operator
to recover the value from the key.

i70 : f#Daniel

o70 = 555

i71 : f#{c,d}

o71 = {1, 2, 3, 4}

10 D. R. Grayson and M. E. Stillman

o71 : List

If the key is a symbol, we can use the operator . instead; this is convenient
if the symbol has a value that we want to ignore.

i72 : Daniel = a

o72 = a

o72 : Symbol

i73 : f.Daniel

o73 = 555

We can use #? to test whether a given key occurs in the hash table.
i74 : f#?a

o74 = true

i75 : f#?c

o75 = false

Finite sets are implemented in Macaulay 2 as hash tables: the elements of the
set are stored as the keys in the hash table, with the accompanying values all
being 1. (Multisets are implemented by using values larger than 1, and are
called tallies.)

i76 : x = set{1,a,{4,5},a}

o76 = Set {{4, 5}, 1, a}

o76 : Set

i77 : x#?a

o77 = true

i78 : peek x

o78 = Set{{4, 5} => 1}
1 => 1
a => 1

i79 : y = tally{1,a,{4,5},a}

o79 = Tally{{4, 5} => 1}
1 => 1
a => 2

o79 : Tally

i80 : y#a

o80 = 2

We might use tally to tally how often a function attains its various possible
values. For example, how often does an integer have 3 prime factors? Or 4?
Use factor to factor an integer.

Data Types, Functions, and Programming 11

i81 : factor 60

2
o81 = 2 3*5

o81 : Product

Then use # to get the number of factors.
i82 : # factor 60

o82 = 3

Use apply to list some values of the function.
i83 : apply(2 .. 1000, i -> # factor i)

o83 = (1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, · · ·

o83 : Sequence

Finally, use tally to summarize the results.
i84 : tally oo

o84 = Tally{1 => 193}
2 => 508
3 => 275
4 => 23

o84 : Tally

Hash tables turn out to be convenient entities for storing odd bits and
pieces of information about something in a way that’s easy to think about
and use. In Macaulay 2, rings are represented as hash tables, as are ideals,
matrices, modules, chain complexes, and so on. For example, although it isn’t
a documented feature, the key ideal is used to preserve the ideal that was
used above to define the quotient ring R, as part of the information stored in
R.

i85 : R.ideal

3
o85 = ideal(x - y)

o85 : Ideal of QQ [x, y, z]

The preferred and documented way for a user to recover this information is
with the function ideal.

i86 : ideal R

3
o86 = ideal(x - y)

o86 : Ideal of QQ [x, y, z]

Users who want to introduce a new high-level mathematical concept to Mac-
aulay 2 may learn about hash tables by referring to the Macaulay 2 manual
[1].

12 D. R. Grayson and M. E. Stillman

5 Methods

You may use the code command to locate the source code for a given function,
at least if it is one of those functions written in the Macaulay 2 language.
For example, here is the code for demark, which may be used to put commas
between strings in a list.

i87 : code demark

o87 = -- ../../../m2/fold.m2:23
demark = (s,v) -> concatenate between(s,v)

The code for tensoring a ring map with a module can be displayed in this
way.

i88 : code(symbol **, RingMap, Module)

o88 = -- ../../../m2/ringmap.m2:294-298
RingMap ** Module := Module => (f,M) -> (

R := source f;
S := target f;
if R =!= ring M then error "expected module over source ring";
cokernel f(presentation M));

The code implementing the ideal function when applied to a quotient ring
can be displayed as follows.

i89 : code(ideal, QuotientRing)

o89 = -- ../../../m2/quotring.m2:7
ideal QuotientRing := R -> R.ideal

Notice that it uses the key ideal to extract the information from the ring’s
hash table, as you might have guessed from the previous discussion. The bit
of code displayed above may be called a method as a way of indicating that
several methods for dealing with various types of arguments are attached
to the function named ideal. New such method functions may be created
with the function method. Let’s illustrate that with an example: we’ll write
a function called denom which should produce the denominator of a rational
number. When applied to an integer, it should return 1. First we create the
method function.

i90 : denom = method();

Then we tell it what to do with an argument from the class QQ of rational
numbers.

i91 : denom QQ := x -> denominator x;

And also what to do with an argument from the class ZZ of integers.
i92 : denom ZZ := x -> 1;

Let’s test it.
i93 : denom(5/3)

o93 = 3

i94 : denom 5

o94 = 1

Data Types, Functions, and Programming 13

6 Pointers to the Source Code

A substantial part of Macaulay 2 is written in the same language provided
to the users. A good way to learn more about the Macaulay 2 language
is to peruse the source code that comes with the system in the directory
Macaulay2/m2. Use the code function, as described in the previous section,
for locating the bit of code you wish to view.

The source code for the interpreter of the Macaulay 2 language is in
the directory Macaulay2/d. It is written in another language designed to be
mostly type-safe, which is translated into C by the translator whose own C
source code is in the directory Macaulay2/c. Here is a sample line of code from
the file Macaulay2/d/tokens.d, which shows how the translator provides for
allocation and initialization of dynamic data structures.

globalFrame := Frame(dummyFrame,globalScope.seqno,Sequence(nullE));

And here is the C code produced by the translator.
tokens_Frame tokens_globalFrame;
tokens_Frame tmp__23;
Sequence tmp__24;
tmp__24 = (Sequence) GC_MALLOC(sizeof(struct S259_)+(1-1)*sizeof(Expr));
if (0 == tmp__24) outofmem();
tmp__24->len_ = 1;
tmp__24->array_[0] = tokens_nullE;
tmp__23 = (tokens_Frame) GC_MALLOC(sizeof(struct S260_));
if (0 == tmp__23) outofmem();
tmp__23->next = tokens_dummyFrame;
tmp__23->scopenum = tokens_globalScope->seqno;
tmp__23->values = tmp__24;
tokens_globalFrame = tmp__23;

The core algebraic algorithms constitute the engine of Macaulay 2 and
are written in C++, with the source files in the directory Macaulay2/e. In
the current version of the program, the interface between the interpreter and
the core algorithms consists of a single two-directional stream of bytes. The
manual that comes with the system [1] describes the engine communication
protocol used in that interface.

References

1. Daniel R. Grayson and Michael E. Stillman: Macaulay 2, a software sys-
tem for research in algebraic geometry and commutative algebra. Available in
source code form and compiled for various architectures, with documentation,
at http://www.math.uiuc.edu/Macaulay2/.

Index

-> 4
. 10
:= 4
=> 9
9
? 10

append 3
apply 5
arrays 2

break 6

code 12

data types 1
do 5

endl 7

factor 10
files 6
for 5
functions 4

get 7

hash table 9

ideal 11
if 5
input 7

join 3

keys of a hash table 9

lists 2
– appending 3
– joining 3
– prepending 4
load 7

method 12
method 12

oo 8

prepend 4
print 6
printing
– to a file 8
product 4

return 5
ring
– making one 7

scan 5
sequences 2
set 10
stdio 6
strings 2
sum 4
symbol 12
symbols 1

tally 10
toExternalString 8
toString 8

value 8
values of a hash table 9
variables
– local 4
visible lists 2

while 5

