# Data Types, Functions, and Programming 

Daniel R. Grayson* and Michael E. Stillman**

In this chapter we present an introduction to the structure of Macaulay 2 commands and the writing of functions in the Macaulay 2 language. For further details see the Macaulay 2 manual distributed with the program [1].

## 1 Basic Data Types

The basic data types of Macaulay 2 include numbers of various types (integers, rational numbers, floating point numbers, complex numbers), lists (basic lists, and three types of visible lists, depending on the delimiter used), hash tables, strings of characters (both 1-dimensional and 2-dimensional), Boolean values (true and false), symbols, and functions. Higher level types useful in mathematics are derived from these basic types using facilities provided in the Macaulay 2 language. Except for the simplest types (integers and Boolean values), Macaulay 2 normally displays the type of the output value on a second labeled output line.

Symbols have a name which consists of letters, digits, or apostrophes, the first of which is a letter. Values can be assigned to symbols and recalled later.

```
i1 : w
o1 = w
o1 : Symbol
i2 : w = 2^100
o2 = 1267650600228229401496703205376
i3 : w
o3 = 1267650600228229401496703205376
```

Multiple values can be assigned in parallel.

```
i4 : (w,w') = (33,44)
o4 = (33, 44)
04 : Sequence
i5 : w
o5 = 33
i6 : w'
06 = 44
```

[^0]Comments are initiated by -- and extend to the end of the line.

```
i7 : (w,w') = (33, -- this is a comment
        44)
07 = (33, 44)
07 : Sequence
```

Strings of characters are delimited by quotation marks.

```
i8 : w = "abcdefghij"
08 = abcdefghij
```

They may be joined horizontally to make longer strings, or vertically to make a two-dimensional version called a net.

```
i9 : w | w
\circ9 = abcdefghijabcdefghij
i10 : w || w
o10 = abcdefghij
    abcdefghij
```

Nets are used in the preparation of two dimensional output for polynomials.
Floating point numbers are distinguished from integers by the presence of a decimal point, and rational numbers are entered as fractions.

```
i11 : 2^100
011 = 1267650600228229401496703205376
i12 : 2.^100
012 = 1.26765 10^30
012 : RR
i13 : (36 + 1/8)^6
    582622237229761
013 = ---------------
    262144
o13 : QQ
```

Parentheses, braces, and brackets are used as delimiters for the three types of visible lists: lists, sequences, and arrays.

```
i14 : x1 = {1,a}
o14 = {1, a}
o14 : List
i15 : x2 = (2,b)
o15 = (2, b)
015 : Sequence
i16 : x3 = [3,c,d,e]
o16 = [3, c, d, e]
o16 : Array
```

Even though they use braces, lists should not be confused with sets, which will be treated later. A double period can be used to construct a sequence of consecutive elements in various contexts.

```
i17 : 1 .. }
o17 = (1, 2, 3, 4, 5, 6)
o17 : Sequence
i18 : a .. f
o18=(a, b, c, d, e, f)
018 : Sequence
```

Lists can be nested.

```
i19 : xx = {x1,x2,x3}
o19 = {{1, a}, (2, b), [3, c, d, e]}
o19 : List
```

The number of entries in a list is provided by \#.

```
i20 : #xx
020 = 3
```

The entries in a list are numbered starting with 0 , and can be recovered with \# used as a binary operator.

```
i21 : xx#O
o21 = {1, a}
o21 : List
i22 : xx#0#1
o22 = a
o22 : Symbol
```

We can join visible lists and append or prepend an element to a visible list. The output will be the same type of visible list that was provided in the input: a list, a sequence, or an array; if the arguments are various types of lists, the output will be same type as the first argument.

```
i23 : join(x1,x2,x3)
o23 = {1, a, 2, b, 3, c, d, e}
o23 : List
i24 : append(x3,f)
o24 = [3, c, d, e, f]
o24 : Array
```

```
i25 : prepend(f,x3)
o25 = [f, 3, c, d, e]
o25 : Array
```

Use sum or product to produce the sum or product of all the elements in a list.

```
i26 : sum {1,2,3,4}
026 = 10
i27 : product {1,2,3,4}
027 = 24
```


## 2 Control Structures

Commands for later execution are encapsulated in functions. A function is created using the operator $\rightarrow$ to separate the parameter or sequence of parameters from the code to be executed later. Let's try an elementary example of a function with two arguments.

```
i28 : f = (x,y) -> 1000 * x + y
o28 = f
o28 : Function
```

The parameters x and y are symbols that will acquire a value later when the function is executed. They are local in the sense that they are completely different from any symbols with the same name that occur elsewhere. Additional local variables for use within the body of a function can be created by assigning a value to them with $:=$ (first time only). We illustrate this by rewriting the function above.

```
i29 : f = (x,y) -> (z := 1000 * x; z + y)
o29 = f
o29 : Function
```

Let's apply the function to some arguments.
i30 : f(3,7)
$\mathrm{o} 30=3007$
The sequence of arguments can be assembled first, and then passed to the function.

```
i31 : s = (3,7)
o31 = (3, 7)
o31 : Sequence
```

```
i32 : f s
o32 = 3007
```

As above, functions receiving one argument may be called without parentheses.

```
i33 : sin 2.1
o33 = 0.863209
o33 : RR
```

A compact notation for functions makes it convenient to apply them without naming them first. For example, we may use apply to apply a function to every element of a list and to collect the results into a list.

```
i34 : apply(1 .. 10, i -> i^3)
o34 = (1, 8, 27, 64, 125, 216, 343, 512, 729, 1000)
o34 : Sequence
```

The function scan will do the same thing, but discard the results.

```
i35 : scan(1 .. 5, print)
```

1
2
3
4
5

Use if . . . then ... else ... to perform alternative actions based on the truth of a condition.

```
i36 : apply(1 .. 10, i -> if even i then 1000*i else i)
o36 = (1, 2000, 3, 4000, 5, 6000, 7, 8000, 9, 10000)
o36 : Sequence
```

A function can be terminated prematurely with return.

```
i37 : apply(1 .. 10, i >> (if even i then return 1000*i; -i))
o37 = (-1, 2000, -3, 4000, -5, 6000, -7, 8000, -9, 10000)
o37 : Sequence
```

Loops in a program can be implemented with while ... do ....

```
i38 : i = 1; while i < 50 do (print i; i = 2*i)
1
2
4
8
16
32
```

Another way to implement loops is with for and do or list, with optional clauses introduced by the keywords from, to, and when.

```
i40 : for i from 1 to 10 list i^3
040 = {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}
040 : List
```

```
i41 : for i from 1 to 4 do print i
1
2
3
```

A loop can be terminated prematurely with break, which accepts an optional value to return as the value of the loop expression.

```
i42 : for i from 2 to 100 do if not isPrime i then break i
042 = 4
```

If no value needs to be returned, the condition for continuing can be provided with the keyword when; iteration continues only as long as the predicate following the keyword returns true.

```
i43 : for i from 2 to }100\mathrm{ when isPrime i do print i
2
3
```


## 3 Input and Output

The function print can be used to display something on the screen.

```
i44 : print 2^100
1267650600228229401496703205376
```

For example, it could be used to display the elements of a list on separate lines.

```
i45 : (1 .. 5) / print;
1
2
4
5
```

The operator << can be used to display something on the screen, without the newline character.

```
i46 : << 2^100
1267650600228229401496703205376
046 = stdio
o46 : File
    -- the standard input output file
```

Notice the value returned is a file. A file in Macaulay 2 is a data type that represents a channel through which data can be passed, as input, as output, or in both directions. The file stdio encountered above corresponds to your shell window or terminal, and is used for two-way communication between the program and the user. A file may correspond to what one usually calls a file, i.e., a sequence of data bytes associated with a given name and stored on your disk drive. A file may also correspond to a socket, a channel for communication with other programs over the network.

Files can be used with the binary form of the operator $\ll$ to display something else on the same line.

```
i47 : << "the value is : " << 2^100
the value is : 1267650600228229401496703205376
o47 = stdio
047 : File
    -- the standard input output file
```

Using endl to represent the new line character or character sequence, we can produce multiple lines of output.

```
i48 : << "A = " << 2^100 << endl << "B = " << 2^200 << endl;
A = 1267650600228229401496703205376
B = 1606938044258990275541962092341162602522202993782792835301376
```

We can send the same output to a disk file named foo, but we must remember to close it with close.

```
i49 : "foo" << "A = " << 2^100 << endl << close
०49 = foo
o49 : File
```

The contents of the file can be recovered as a string with get.
i50 : get "foo"
$\circ 50=A=1267650600228229401496703205376$
If the file contains valid Macaulay 2 commands, as it does in this case, we can execute those commands with load.
i51 : load "foo"
We can verify that the command took effect by evaluating A.
i52 : A
o52 = 1267650600228229401496703205376
Alternatively, if we want to see those commands and the output they produce, we may use input.
$i 53$ : input "foo"
i54 : A = 1267650600228229401496703205376
o54 = 1267650600228229401496703205376
i55 :
Let's set up a ring for computation in Macaulay 2.
$i 56: R=Q Q[x, y, z]$
$056=R$
o56 : PolynomialRing
$i 57: f=(x+y)^{\wedge} 3$
$057=x^{3}+3 x^{2} y+3 x * y^{2}+y^{3}$
057 : R

Printing, and printing to files, works for polynomials, too.

```
i58 : "foo" << f << close;
```

The two-dimensional output is readable by humans, but is not easy to convert back into a polynomial.

```
i59 : get "foo"
059=3 2 2 3
    x + 3x y + 3x*y + y
```

Use toString to create a 1-dimensional form of the polynomial that can be stored in a file in a format readable by Macaulay 2 and by other symbolic algebra programs, such as Mathematica or Maple.

```
i60 : toString f
060 = x^3+3*x^2*y+3*x*y^2+y^3
```

Send it to the file.

```
i61 : "foo" << toString f << close;
```

Get it back.

```
i62 : get "foo"
o62 = x^3+3*x^2*y+3*x*y^2+y^3
```

Convert the string back to a polynomial with value, using oo to recover the value of the expression on the previous line.

```
i63 : value oo
063 = x 3 + 3x y + 3x*y 2}+\mp@subsup{y}{}{2
063 : R
```

The same thing works for matrices, and a little more detail is provided by toExternalString, if needed.

```
i64 : vars R
064 = | x y z |
```

064 : Matrix $\mathrm{R}^{1}<---R^{3}$
i65 : toString vars $R$
$065=\operatorname{matrix}\{\{x, y, z\}\}$
i66 : toExternalString vars $R$
$066=\operatorname{map}\left(R^{\wedge}\{\{0\}\}, R^{\wedge}\{\{-1\},\{-1\},\{-1\}\},\{\{x, y, z\}\}\right)$

## 4 Hash Tables

Recall how one sets up a quotient ring for computation in Macaulay 2.

```
i67 : R = QQ[x,y,z]/(x^3-y)
067 = R
067 : QuotientRing
i68 : (x+y)^4
068 = 6x y y + 4x*y + + y 4}+x*y+4y 2,
068 : R
```

How does Macaulay 2 represent a ring like $R$ in the computer? To answer that, first think about what sort of information needs to be retained about $R$. We may need to remember the coefficient ring of $R$, the names of the variables in $R$, the monoid of monomials in the variables, the degrees of the variables, the characteristic of the ring, whether the ring is commutative, the ideal modulo which we are working, and so on. We also may need to remember various bits of code: the code for performing the basic arithmetic operations, such as addition and multiplication, on elements of $R$; the code for preparing a readable representation of an element of $R$, either 2-dimensional (with superscripts above the line and subscripts below), or 1-dimensional. Finally, we may want to remember certain things that take a lot of time to compute, such as the Gröbner basis of the ideal.

A hash table is, by definition, a way of representing (in the computer) a function whose domain is a finite set. In Macaulay 2, hash tables are extremely flexible: the elements of the domain (or keys) and the elements of the range (or values) of the function may be any of the other objects represented in the computer. It's easy to come up with uses for functions whose domain is finite: for example, a monomial can be represented by the function that associates to a variable its nonzero exponent; a polynomial can be represented by a function that associates to a monomial its nonzero coefficient; a set can be represented by any function with that set as its domain; a (sparse) matrix can be represented as a function from pairs of natural numbers to the corresponding nonzero entry.

Let's create a hash table and name it.

```
i69 : f = new HashTable from { a=>444, Daniel=>555, {c,d}=>{1,2,3,4}}
069 = HashTable{{c, d} => {1, 2, 3, 4}}
    a => 444
    Daniel => 555
```

069 : HashTable

The operator => is used to represent a key-value pair. We can use the operator \# to recover the value from the key.

```
i70 : f#Daniel
o70 = 555
i71 : f#{c,d}
o71 = {1, 2, 3, 4}
```

o71 : List

If the key is a symbol, we can use the operator . instead; this is convenient if the symbol has a value that we want to ignore.

```
i72 : Daniel = a
o72 = a
o72 : Symbol
i73 : f.Daniel
073 = 555
```

We can use \#? to test whether a given key occurs in the hash table.

```
i74 : f#?a
o74 = true
i75 : f#?c
o75 = false
```

Finite sets are implemented in Macaulay 2 as hash tables: the elements of the set are stored as the keys in the hash table, with the accompanying values all being 1. (Multisets are implemented by using values larger than 1, and are called tallies.)

```
i76 : x = set{1,a,{4,5},a}
076 = Set {{4, 5}, 1, a}
o76 : Set
i77 : x#?a
o77 = true
i78 : peek x
o78 = Set{{4, 5} => 1}
    1 => 1
    a => 1
i79 : y = tally{1,a,{4,5},a}
o79 = Tally{{4, 5} => 1}
    1 => 1
    a => 2
o79 : Tally
i80 : y#a
080 = 2
```

We might use tally to tally how often a function attains its various possible values. For example, how often does an integer have 3 prime factors? Or 4? Use factor to factor an integer.

```
i81 : factor 60
2
* 2*5
081 : Product
```

Then use \# to get the number of factors.

```
i82 : # factor 60
082 = 3
```

Use apply to list some values of the function.

```
i83 : apply(2 .. 1000, i -> # factor i)
o83 = (1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, ...
083 : Sequence
```

Finally, use tally to summarize the results.

```
i84 : tally oo
084 = Tally{1 => 193}
    2 => 508
    3 => 275
    4 => 23
084 : Tally
```

Hash tables turn out to be convenient entities for storing odd bits and pieces of information about something in a way that's easy to think about and use. In Macaulay 2, rings are represented as hash tables, as are ideals, matrices, modules, chain complexes, and so on. For example, although it isn't a documented feature, the key ideal is used to preserve the ideal that was used above to define the quotient ring R , as part of the information stored in R.
i85 : R.ideal
$085=\operatorname{ideal}\left(x^{3}-y\right)$
085 : Ideal of QQ [ $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ]
The preferred and documented way for a user to recover this information is with the function ideal.

```
i86 : ideal R
086 = ideal( (x - y)
086 : Ideal of QQ [x, y, z]
```

Users who want to introduce a new high-level mathematical concept to Macaulay 2 may learn about hash tables by referring to the Macaulay 2 manual [1].

## 5 Methods

You may use the code command to locate the source code for a given function, at least if it is one of those functions written in the Macaulay 2 language. For example, here is the code for demark, which may be used to put commas between strings in a list.

```
i87 : code demark
o87 = -- ../../../m2/fold.m2:23
    demark = (s,v) -> concatenate between(s,v)
```

The code for tensoring a ring map with a module can be displayed in this way.

```
i88 : code(symbol **, RingMap, Module)
088 = -- ../../../m2/ringmap.m2:294-298
    RingMap ** Module := Module => (f,M) -> (
        R := source f;
        S := target f;
        if R =!= ring M then error "expected module over source ring";
        cokernel f(presentation M));
```

The code implementing the ideal function when applied to a quotient ring can be displayed as follows.

```
i89 : code(ideal, QuotientRing)
089 = -- ../../../m2/quotring.m2:7
    ideal QuotientRing := R -> R.ideal
```

Notice that it uses the key ideal to extract the information from the ring's hash table, as you might have guessed from the previous discussion. The bit of code displayed above may be called a method as a way of indicating that several methods for dealing with various types of arguments are attached to the function named ideal. New such method functions may be created with the function method. Let's illustrate that with an example: we'll write a function called denom which should produce the denominator of a rational number. When applied to an integer, it should return 1. First we create the method function.

```
i90 : denom = method();
```

Then we tell it what to do with an argument from the class $Q Q$ of rational numbers.
i91 : denom $Q Q:=x$-> denominator $x$;
And also what to do with an argument from the class ZZ of integers.
i92 : denom ZZ := x -> 1 ;
Let's test it.

```
i93 : denom(5/3)
093 = 3
i94 : denom 5
o94 = 1
```


## 6 Pointers to the Source Code

A substantial part of Macaulay 2 is written in the same language provided to the users. A good way to learn more about the Macaulay 2 language is to peruse the source code that comes with the system in the directory Macaulay $2 / \mathrm{m} 2$. Use the code function, as described in the previous section, for locating the bit of code you wish to view.

The source code for the interpreter of the Macaulay 2 language is in the directory Macaulay2/d. It is written in another language designed to be mostly type-safe, which is translated into C by the translator whose own C source code is in the directory Macaulay2/c. Here is a sample line of code from the file Macaulay2/d/tokens.d, which shows how the translator provides for allocation and initialization of dynamic data structures.
globalFrame := Frame(dummyFrame,globalScope.seqno,Sequence(nullE));
And here is the C code produced by the translator.

```
tokens_Frame tokens_globalFrame;
tokens_Frame tmp__23;
Sequence tmp__24;
tmp__24 = (Sequence) GC_MALLOC(sizeof(struct S259_)+(1-1)*sizeof(Expr));
if (0 == tmp__24) outofmem();
tmp__24->len_ = 1;
tmp__24->array_[0] = tokens_nullE;
tmp__23 = (tokens_Frame) GC_MALLOC(sizeof(struct S260_));
if (0 == tmp__23) outofmem();
tmp__23->next = tokens_dummyFrame;
tmp__23->scopenum = tokens_globalScope->seqno;
tmp__23->values = tmp__24;
tokens_globalFrame = tmp__23;
```

The core algebraic algorithms constitute the engine of Macaulay 2 and are written in C++, with the source files in the directory Macaulay2/e. In the current version of the program, the interface between the interpreter and the core algorithms consists of a single two-directional stream of bytes. The manual that comes with the system [1] describes the engine communication protocol used in that interface.

## References

1. Daniel R. Grayson and Michael E. Stillman: Macaulay 2, a software system for research in algebraic geometry and commutative algebra. Available in source code form and compiled for various architectures, with documentation, at http://www.math.uiuc.edu/Macaulay2/.

## Index

| -> 4 | hash table 9 |  | $\begin{array}{ll} \text { return } \\ \text { ring } \end{array}$ |
| :---: | :---: | :---: | :---: |
| 10 |  |  |  |
| $=4$ | ideal 11 |  | - making one 7 |
| => 9 | if 5 |  |  |
| \# 9 | input |  | scan 5 |
| \# ? 10 | join 3 |  | sequences 2 |
|  |  |  |  |
| append 3 | keys of a hash table |  |  |
| apply 5 |  | 9 | $\text { strings } \quad 2$ |
| arrays 2 | lists 2 |  | sum 4 |
| break 6 | - appending 3 |  | symbol 12 |
|  | - joining 3 |  | symbols 1 |
| code 12 | - prepending 4 |  |  |
|  | load 7 |  | tally 10 |
| data types |  |  | toExternalString |
| do 5 | $\begin{array}{lc} \text { method } & 12 \\ \text { method } & 12 \end{array}$ |  | toString 8 |
|  |  |  |  |
| endl 7 | -0 8 |  | value 8 |
|  |  |  | values of a hash table |
| files 6 | prepend 4 |  |  |
| for 5 | print 6 |  | - local 4 |
| functions | printing |  | visible lists 2 |
|  | - to a file 8 |  |  |
| get 7 | product 4 |  | while 5 |


[^0]:    * Supported by NSF grant DMS 99-70085.
    ** Supported by NSF grant 99-70348.

