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This chapter contains a new proof and new applications of a theorem of
Shamash and Eisenbud, providing a construction of projective resolutions of
modules over a complete intersection. The duals of these infinite projective
resolutions are finitely generated differential graded modules over a graded
polynomial ring, so they can be represented in the computer, and can be
used to compute Ext modules simultaneously in all homological degrees. It
is shown how to write Macaulay 2 code to implement the construction, and
how to use the computer to determine invariants of modules over complete
intersections that are difficult to obtain otherwise.

Introduction

Let A = K[x1, . . . , xe] be a polynomial ring with variables of positive degree
over a field K, and B = A/J a quotient ring modulo a homogeneous ideal.

In this paper we consider the case when B is a graded complete inter-
section, that is, when the defining ideal J is generated by a homogeneous
A-regular sequence. We set up, describe, and illustrate a routine Ext, now
implemented in Macaulay 2. For any two finitely generated graded B-modules
M and N it yields a presentation of Ext•B(M,N) as a bigraded module over
an appropriately bigraded polynomial ring S = A[X1, . . . , Xc].

A novel feature of our routine is that it computes the modules ExtnB(M,N)
simultaneously in all cohomological degrees n ≥ 0. This is made possible by
the use of cohomology operations, a technique usually confined to theoretical
considerations. Another aspect worth noticing is that, although the result is
over a ring B with nontrivial relations, all the computations are made over
the polynomial ring S; this may account for the effectiveness of the algorithm.

To explain the role of the complete intersection hypothesis, we cast it into
the broader context of homological algebra over graded rings.

Numerous results indicate that the high syzygy modules of M exhibit
‘similar’ properties. For an outrageous example, assume that M has finite
projective dimension. Its distant syzygies are then all equal to 0, and so—for
trivial reasons—display an extremely uniform behavior. However, even this
case has a highly nontrivial aspect: due to the Auslander-Buchsbaum Equality
asymptotic information is available after at most (e+ 1) steps. This accounts
for the effectiveness of computer constructions of finite free resolutions.
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Problems that computers are not well equipped to handle arise unavoid-
ably when studying asymptotic behavior of infinite resolutions. We describe
some, using graded Betti numbers βBns(M) = dimK ExtnB(M,k)−s, where
k = B/(x1, . . . , xe)B, and regularity regB(M) = supn,s{s− n |βBns(M) 6= 0}.

• Irrationality . There are rings B for which no recurrent relation with con-
stant coefficients exists among the numbers βBn (k) =

∑
s β

B
ns(k), see [1].

• Irregularity . For each r ≥ 2 there exists a ring B(r) with β
B(r)
ns (k) = 0

for s 6= n and 0 ≤ n ≤ r, but with β
B(r)
r,r+1(k) 6= 0, see [14].

• Span. If B is generated over K by elements of degree one and regB(k) 6= 0,
then regB(k) =∞, see [7].

• Size. There are inequalities βBn (k) ≥ βn for all n ≥ 0 and for some
constant β > 1, unless B is a complete intersection, see [3].

These obstructions vanish miraculously when B is a graded complete in-
tersection: For each M and all n� 0 the number βn+1(M) is a linear combi-
nation with constant coefficients of βBn−2c(M), . . . , βBn (M). If B is generated
in degree one, then regB(k) = 0 if and only if the ideal J is generated by
quadratic forms. There are inequalities βBn (M) ≤ β(M)nc−1 for all n ≥ 1
and for some constant β(M) > 0.

The algebra behind the miracle is a theorem of Gulliksen [12], who proves
that Ext•B(M,N) is a finitely generated bigraded module over a polynomial
ring of cohomology operators S = A[X1, . . . , Xc], where each variable Xi

has cohomological degree 2. As a consequence of this result, problems in
Homological Algebra can be answered in terms of Commutative Algebra.

Gulliksen’s definition of the operators Xi as iterated connecting homo-
morphisms is badly suited for use by a computer. Other definitions have
been given subsequently by several authors, see Remark 4.6. We take the
approach of Eisenbud [11], who derives the operators from a specific B-free
resolution of M , obtained by extending a construction of Shamash [15].

The resolution of Shamash and Eisenbud, and Gulliksen’s Finiteness The-
orem, are presented with detailed proofs in Section 4. They are obtained
through a new construction—that of an intermediate resolution of M over
the polynomial ring—that encodes C and all the null-homotopies of C corre-
sponding to multiplication with elements of J ; this material is contained in
Section 3. It needs standard multilinear algebra, developed ad hoc in Section
2. Rules for juggling several gradings are discussed in an Appendix.

In Section 5 we present and illustrate the code for the routine Ext, which
runs remarkably close to the proofs in Sections 3 and 4. Section 6 contains
numerous computations of popular numerical invariants of a graded mod-
ule, like its complexity, Poincaré series, and Bass series. They are extracted
from knowledge of the bigraded modules Ext•B(M,k) and Ext•B(k,M), whose
computation is also illustrated by examples, and is further used to obtain ex-
plicit equations for the cohomology variety V∗B(M) defined in [2]. For most
invariants we include some short code that automates their computation. In
Section 7 we extend these procedures to invariants of pairs of modules.
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1 Matrix Factorizations

We start the discussion of homological algebra over a complete intersection
with a very special case, that can be packaged attractively in matrix terms.

Let f be a non-zero-divisor in a commutative ring A.
Following Eisenbud [11, Sect. 5] we say that a pair (U, V ) of matrices with

entries in A, of sizes k × ` and `× k, is a matrix factorization of −f if

U · V = −f · Ik and V · U = −f · I`

where Im denotes the m × m unit matrix. Localizing at f , one sees that
−f−1 · U and V are inverse matrices over Af ; as a consequence ` = k, and
each equality above implies the other, for instance:

V · U =
(
− f−1 · U

)−1 · U = −f · U−1 · U = −f · Ik

Here is a familiar example of matrix factorization, with f = xy − wz:(
w x
y z

)
·
(
z −y
−x w

)
= −(xy − wz) ·

(
1 0
0 1

)
=
(
z −y
−x w

)
·
(
w x
y z

)
Let now C1 and C0 be free A-modules of rank r, and let

d1 : C1 → C0 and s0 : C0 → C1

be A-linear homomorphisms defined by the matrices U and V , respectively,
after bases have been tacitly chosen.

The second condition on the matrices U and V implies that d1 is injective,
while the first condition on these matrices shows that fC0 is contained in
Im(d1). Setting L = Coker(d1), one sees that the chosen matrix factorization
defines a commutative diagram with exact rows

0 // C1
d1 //

−f ·1C1

��

C0
//

−f ·1C0

��

s0

{{xxxxxxxxxxxxx
L //

0L= −f ·1L

��

0

0 // C1
d1 // C0

// L // 0

which expresses the following facts: C = 0 → C1
d1−→ C0 → 0 is a free

resolution of the A-module L, this module is annihilated by f , and s0 is a
homotopy between the maps −f · 1C and 0C , both of which lift −f · 1L.

Conversely, if an A-module L annihilated by f has a free resolution (C, d1)
of length 1, then rankA C1 = rankA C0, and any choice of homotopy s0 be-
tween −f · 1C and 0C provides a matrix factorization of −f .

When we already have an A-module L with a presentation matrix U that
defines an injective A-linear map, we can use Macaulay 2 to create a matrix
factorization (U, V ) of −f .

Example 1.1. We revisit the familiar example from a higher perspective.
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i1 : A = QQ[w,x,y,z]

o1 = A

o1 : PolynomialRing

i2 : U = matrix {{w,x},{y,z}}

o2 = | w x |
| y z |

2 2
o2 : Matrix A <--- A

i3 : C = chainComplex U

2 2
o3 = A <-- A

0 1

o3 : ChainComplex

i4 : L = HH_0 C

o4 = cokernel | w x |
| y z |

2
o4 : A-module, quotient of A

i5 : f = -det U

o5 = x*y - w*z

o5 : A

Let’s verify that f annihilates L.
i6 : f * L == 0

o6 = true

We use the nullhomotopy function.
i7 : s = nullhomotopy (-f * id_C)

2 2
o7 = 1 : A <----------------- A : 0

{1} | z -x |
{1} | -y w |

o7 : ChainComplexMap

Let’s verify that s is a null-homotopy for −f , using C.dd to obtain the dif-
ferential of the chain complex C as a map of graded modules.

i8 : s * C.dd + C.dd * s == -f

o8 = true

We extract the matrix V from the null-homotopy to get our factorization.
i9 : V = s_0

o9 = {1} | z -x |
{1} | -y w |
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2 2
o9 : Matrix A <--- A

For every f and every r ≥ 1 there exists a trivial matrix factorization of
−f , namely, (f ·Ik,−Ik); it can be obtained from the A-module L = Ak/fAk.
In general, it may not be clear how to find an A-module L with the properties
necessary to obtain an ‘interesting’ matrix factorization of −f .

However, in some cases the supply is plentiful.

Remark 1.2. Let A be a graded polynomial ring in e variables of positive
degree over a field K, let f be a homogeneous polynomial in A, and set
B = A/(f). Every B-module M of infinite projective dimension generates a
matrix factorization (U, V ) of −f , as follows.

Let (F, dF ) be a minimal graded free resolution of M over B, and set
L = Coker

(
dF : Fe+1 → Fe

)
. Since M has infinite projective dimension,

we have L 6= 0. By the Depth Lemma, depthB L = depthB. On the other
hand, depthB L = depthA L and depthB = depthA−1. By Hilbert’s Syzygy
Theorem, the minimal graded free resolution (C, dC) of L over A is finite. By
the Auslander-Buchsbaum Equality, Cn = 0 for n > depthA−depthA L = 1.

The minimality of F ensures that all nonzero entries of the presentation
matrix U of L are forms of positive degree. On the other hand, by [11, Sect. 0]
the module L has no direct summand isomorphic to B: it follows that all
nonzero entries of the homotopy matrix V are forms of positive degree (this is
the reason for choosing L as above—stopping one step earlier in the resolution
F could have produced a module L with a non-zero free direct summand).

Our reader would have noticed that Macaulay 2 can read all the data and
perform all the operations needed to construct a module L by the procedure
described in the preceding remark. Here is how it does it.

Example 1.3. We produce a matrix factorization of −f , where

f = x3 + 3y3 − 2yz2 + 5z3 ∈ Q[x, y, z] = A

generated by the module M = B/m2, where B = A/(f) and m = (x, y, z)B.
i10 : A = QQ[x,y,z];

i11 : f = x^3 + 3*y^3 - 2*y*z^2 + 5*z^3;

i12 : B = A/f;

i13 : m = ideal(x,y,z)

o13 = ideal (x, y, z)

o13 : Ideal of B

Let’s take the B-module M and compute its minimal B-free resolution.
i14 : M = B^1/m^2;
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i15 : F = resolution(M, LengthLimit=>8)

1 6 9 9 9 9 9 9 9
o15 = B <-- B <-- B <-- B <-- B <-- B <-- B <-- B <-- B

0 1 2 3 4 5 6 7 8

o15 : ChainComplex

We introduce a function restrict1 N which accepts a B-module N and
restricts scalars to produce an A-module.

i16 : restrict1 = N -> coker(lift(presentation N,A) | f);

Now make L as described in Remark 1.2
i17 : L = restrict1 cokernel F.dd_4;

We proceed as in Example 1.1 to get a matrix factorization.
i18 : C = res L;

i19 : U = C.dd_1;

9 9
o19 : Matrix A <--- A

i20 : print U
{4} | 0 xy x2 y2 0 0 0 yz-5/2z2 0 |
{4} | 0 x2 -3y2 xy yz-5/2z2 0 yz-5/2z2 0 0 |
{4} | x2 0 -2yz+5z2 0 y2-5/2yz yz-5/2z2 -5/2yz 0 0 |
{5} | 0 0 0 1/3z 0 0 0 1/2y x |
{5} | 0 0 -z 0 1/2y 0 1/2y -1/2x 0 |
{5} | 0 -z 0 0 -1/2x 0 -1/2x 0 3y |
{5} | 0 0 0 -1/3x 0 1/2y -1/3z 0 0 |
{5} | -z y x 0 0 -1/2x 0 0 0 |
{5} | y 0 0 0 0 0 1/3x 0 -2y+5z |

i21 : s = nullhomotopy (-f * id_C);

i22 : V = s_0;

9 9
o22 : Matrix A <--- A

i23 : print V
{6} | 0 0 -x 0 0 -2y2+5yz 0 -2yz+5z2 -3y2 |
{6} | 0 -x 0 0 0 -2yz+5z2 -3xy -3y2 -3yz |
{6} | -x y 0 0 -2yz+5z2 0 0 0 0 |
{6} | -3y 0 0 6yz-15z2 0 0 3x2 3xy 3xz |
{6} | 0 2z -3y -15xz -15yz 2x2 6yz-15z2 0 3x2 |
{6} | -2x 0 2z 0 -4yz+10z2 0 -6y2 2x2 0 |
{6} | 0 0 3y -6xy+15xz -6y2+15yz 0 -6yz+15z2 0 -3x2 |
{6} | 2z 0 0 -6y2 2x2 2xy 0 0 0 |
{6} | 0 0 0 -x2 -xy -y2 -xz -yz -z2 |

i24 : U*V+f==0

o24 = true

i25 : V*U+f==0

o25 = true
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The procedure described above can be automated for more pleasant usage.

Code 1.4. The function matrixFactorization M produces a matrix factor-
ization (U, V ) of −f generated by a module M over B = A/(f).

i26 : matrixFactorization = M -> (
B := ring M;
f := (ideal B)_0;
e := numgens B;
F := resolution(M, LengthLimit => e+1);
L := restrict1 cokernel F.dd_(e+1);
C := res L;
U := C.dd_1;
s := nullhomotopy (-f * id_C);
V := s_0;
assert( U*V + f == 0 );
assert( V*U + f == 0 );
return (U,V));

We use the assert command to signal an error in case the matrices found
don’t satisfy our requirement for a matrix factorization.

Let’s illustrate the new code with a slightly bigger module M than before.

Example 1.5. With the same A, f , B, and m as in Example 1.3, we produce
a matrix factorization generated by the B-module M = B/m3.

i27 : time (U,V) = matrixFactorization(B^1/m^3);
-- used 0.21 seconds

The parallel assignment statement above provides both variables U and V
with matrix values. We examine their shapes without viewing the matrices
themselves by appending a semicolon to the appropriate command.

i28 : U;

15 15
o28 : Matrix A <--- A

i29 : V;

15 15
o29 : Matrix A <--- A

Matrix factorizations were introduced to construct resolutions over the
the residue ring B = A/(f), using the following observation.

Remark 1.6. If (U, V ) is a factorization of −f by k × k matrices and the
maps d1 : C1 → C0 and s0 : C0 → C1 are homomorphisms of free A-modules
defined by U and V , respectively, then the sequence

· · · → C1 ⊗A B
d1⊗1B−−−−→ C0 ⊗A B

s0⊗1B−−−−→ C1 ⊗A B
d1⊗1B−−−−→ C0 ⊗A B → 0

of B-linear maps is a free resolution of the B-module L = Coker(d1).
Indeed, freeness is clear, and we have a complex because d1s0 = −f · 1C0

and s0d1 = −f ·1C1 . If x ∈ C1 satisfies
(
d1⊗1B

)
(x⊗1) = 0, then d1(x) = fy

for some y ∈ C0, hence d1x = d1s0(y). As d1 is injective, we get x = s0(y),
so Ker

(
d1 ⊗ 1B

)
⊆ Im

(
s0 ⊗ 1B

)
; the reverse inclusion follows by symmetry.
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Pooling Remarks 1.2 and 1.6 we recover Eisenbud’s result [11, Sect. 6].

Theorem 1.7. Let A be a graded polynomial ring in e variables of positive
degree over a field K, and f a homogeneous polynomial in A. The minimal
graded free resolution of every finitely generated graded module over B =
A/(f) becomes periodic of period 2 after at most e steps. The periodic part
of the resolution is given by a matrix factorization of −f generated by M .

We illustrate the theorem on an already computed example.

Example 1.8. Let A, f , B, M , and F be as in Example 1.3.
To verify the periodicity of F we subtract pairs of differentials and com-

pare the result with 0: direct comparison of the differentials would not work,
because the free modules involved have different degrees.

i30 : F.dd_3 - F.dd_5 == 0

o30 = false

i31 : F.dd_4 - F.dd_6 == 0

o31 = false

i32 : F.dd_5 - F.dd_7 == 0

o32 = true

The first two answers above come as a surprise—and suggest a property of
F that is weaker than the one we already know to be true!

There is an easy explanation: we checked the syzygy modules for equality ,
rather than for isomorphism. We do not know why Macaulay 2 didn’t produce
an equality at the earliest possible stage, nor why it eventually produced one.
The program has other strategies for computing resolutions, so let’s try one.

i33 : M = B^1/m^2;

i34 : G = resolution(M, LengthLimit => 8, Strategy => 0)

1 6 9 9 9 9 9 9 9
o34 = B <-- B <-- B <-- B <-- B <-- B <-- B <-- B <-- B

0 1 2 3 4 5 6 7 8

o34 : ChainComplex

i35 : G.dd_3 - G.dd_5 == 0

o35 = true

i36 : G.dd_4 - G.dd_6 == 0

o36 = true

i37 : G.dd_5 - G.dd_7 == 0

o37 = true

The strategy paid off, revealing periodicity at the earliest possible stage.
However, the algorithm used may be a lot slower that the default algorithm.
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2 Graded Algebras

We describe some standard universal algebras over a commutative ring A.
Let Q denote a free A-module of rank c, and set Q∗ = HomA(Q,A). We

assign degree 2 to the elements of Q, and degree −2 to those of Q∗. We let Q∧

denote a copy of Q whose elements are assigned degree 1; if x is an element
of Q, then x∧ denotes the corresponding element of Q∧.

We use α = (α1, . . . , αc) ∈ Zc as a multi-index, set |α| =
∑
i αi, and order

Z
c by the rule: α ≥ β means αi ≥ βi for each i. We let o denote the trivial

element of Zc, and εi the i’th element of its standard basis.

Construction 2.1. For each integer m ≥ 0 we form free A-modules

Sm(Q∗) with basis
{
Xα : |α| = m

}
Dm(Q) with basis

{
Y (α) : |α| = m

}∧m(Q∧) with basis
{
Y ∧α : |α| = m and α ≤ (ε1 + · · ·+ εc)

}
For m < 0 we declare the modules Sm(Q∗), Dm(Q), and

∧m(Q∧) to be equal
to 0, and define the symbols Xα, Y (α), and Y ∧α accordingly; in addition, we
set
∧m(Q∧) = 0 and Y ∧α = 0 if |α| 6≤ (ε1 + · · ·+ εc), and we set

Xi = Xεi Yi = Y (εi) Y ∧i = Y ∧εi for i = 1, . . . , c

Taking Sm(Q∗), Dm(Q), and
∧
m(Q∧) as homogeneous components of degree

−2m, 2m, and m, respectively, we introduce graded algebras

S = S(Q∗) D = D(Q) E =
∧

(Q∧)

by defining products of basis elements by the formulas

Xα ·Xβ = Xα+β

Y (α) · Y (β) =
c∏
i=1

(αi + βi)!
αi!βi!

Y (α+β)

Y ∧α · Y ∧β = inv(α, β)Y ∧α+β

where inv(α, β) denotes the number of pairs (i, j) with αi = βj = 1 and i > j.
Thus, S is the symmetric algebra of Q∗, with Xo = 1, while D is the divided
powers algebra of Q, with Y (o) = 1, and E is the exterior algebra of Q∧, with
Y ∧ o = 1. We identify S and the polynomial ring A[X1, . . . , Xc].

A homogeneous derivation of a graded A-algebra W is a homogeneous
A-linear map d : W →W such that the Leibniz rule

d(xy) = d(x)y + (−1)deg x·deg dxd(y)

holds for all homogeneous elements x, y ∈W .
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Construction 2.2. Each sequence f1, . . . , fc ∈ A yields a Koszul map

dE : E → E defined by the formula

dE(Y ∧β) =
c∑
i=1

(−1)β1+···+βi−1fiY
∧ β−εi

It is a derivation of degree −1 and satisfies d2
E = 0.

Construction 2.3. For every Xi ∈ S1(Q∗) and each Y (β) ∈ Dm(Q) we set

Xi yY
(β) = Y (β−εi) ∈ Dm−1(Q)

Extending this formula by A-bilinearity, we define g y y for all g ∈ S1(Q∗) and
all y ∈ D. It is well known, and easily verified, that the map g y : y 7→ g y y is
a graded derivation D → D of degree −2, and that the derivations associated
with arbitrary g and g′ commute. As a consequence, the formula

Xα yY (β) = (X1 y)α1 · · · (Xc y)αc
(
Y (β)

)
∈ D|β−α|(Q)

extended A-linearly to all u ∈ S, defines on D a structure of graded S-module.
The usual products on S ⊗A E and D ⊗A E and the induced gradings

(S ⊗A E)n =
⊕

`−2k=n

Sk(Q∗)⊗A
∧`(Q∧)

(D ⊗A E)n =
⊕

`+2k=n

D(k)(Q)⊗A
∧`(Q∧)

turn S ⊗A E and D ⊗A E into graded algebras. The second one is a graded
module over the first, for the action (u⊗ z) · (y ⊗ z′) = (u y v)⊗ (z · z′).

Construction 2.4. The element w =
∑c
i=1Xi ⊗ Y ∧i yields a Cartan map

dDE : D ⊗A E → D ⊗A E defined by the formula

dDE(y ⊗ z) = w · (y ⊗ z) =
c∑
i=1

(Xi y y)⊗ (Y ∧i · z)

It is an E-linear derivation of degree −1, and d2
DE = 0 because w2 = 0.

Lemma 2.5. For each integer s define a complex Gs as follows:

· · · → Dk(Q)⊗A
∧s−k(Q∧) w−→ Dk−1(Q)⊗A

∧s−k+1(Q∧)→ · · ·

with D0(Q)⊗A
∧s(Q∧) in degree s. If s > 0, then Gs is split exact.

Proof. Note that for each s ∈ Z there exist isomorphisms of complexes⊕∞
s=1G

s ∼= (D ⊗A E)≥1
∼=
(⊗c

i=1G(i)
)
≥1

, where G(i) is the complex

· · · → AY
(k+1)
i ⊗A A

wi−→ (AY (k)
i )⊗ (AY ∧i ) 0−→ (AY (k)

i )⊗A A→ · · ·

and wi is left multiplication withXi⊗Y ∧i . This map bijective, so each complex
G(i)≥1 is split exact. The assertion follows. ut



Complete Intersections 11

3 Universal Homotopies

This section contains the main new mathematical result of the paper.
We introduce a universal construction, that takes as input a projective

resolution C of an A-module M and a finite set f of elements annihilating M ;
the output is a new projective resolution of M over A. If f 6= ∅, then the new
resolution is infinite—even when C is finite—because it encodes additional
data: the null-homotopies for f · 1C for all f ∈ f , all compositions of such
homotopies, and all relations between those compositions. This higher-order
information tracks the transformation of the homological properties of M
when its ring of operators is changed from A to A/(f).

Our construction is motivated by, and is similar to, one due to Shamash
[15] and Eisenbud [11]: assuming that the elements of f form an A-regular
sequence, they produce a projective resolution of M over A/(f). By contrast,
we make no assumption whatsoever on f . With the additional hypothesis, in
the next section we quickly recover the original result from the one below. As
an added benefit, we eliminate the use of spectral sequences from the proof.

Theorem 3.1. Let A be a commutative ring, let f1, . . . , fc be a sequence of
elements of A, let M be an A-module annihilated by fi for i = 1, . . . , c, and let
r : C →M be a resolution of M by projective (respectively, free) A-modules.

There exists a family of homogeneous A-linear maps

{dγ : C → C | deg(dγ) = 2|γ| − 1}γ∈Nc

satisfying the following conditions

do = dC is the differential of C

[do, dγ ] =

−fi · 1C if γ = εi for i = 1, . . . , c
−
∑ +

α+β=γ

dαdβ if |γ| ≥ 2
(1)

where
∑+ denotes a summation restricted to indices in Nc r {o}.

Any family {dγ}γ∈Nc as above defines an A-linear map of degree −1,

dCD : C ⊗A D → C ⊗A D given by

dCD(x⊗ y) =
∑
γ∈Nc

dγ(x)⊗ (Xγ y y) (2)

where D is the divided powers algebra defined in Construction 2.1, and the
action of Xγ on D is defined in Construction 2.3.

With dE and dDE defined in Constructions 2.2 and 2.4 and the tensor
product of maps of graded modules defined as in Remark 3.4, the map

d : C ⊗A D ⊗A E → C ⊗A D ⊗A E given by
d = dCD ⊗ 1E + 1C ⊗ dDE + 1C ⊗ 1D ⊗ dE

(3)
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is an A-linear differential of degree −1, and the map

q : C ⊗A D ⊗A E →M given by

q(x⊗ y ⊗ z) =

{
yz · r(x) if deg(y) = deg(z) = 0
0 otherwise

is a resolution of M by projective (respectively, free) A-modules.

For use in the proof, we bring up a few general homological points.
A bounded filtration of a chain complex F is a sequence

0 = F 0 ⊆ F 1 ⊆ · · · ⊆ F s−1 ⊆ F s ⊆ · · ·

of subcomplexes such that for each n there exists an s with F sn = Fn. As
usual, we let grs(F ) denote the complex of A-modules F s/F s−1.

Lemma 3.2. Let q : F → F ′ be a morphism of complexes with bounded fil-
trations, such that q(F s) ⊆ F ′s for all s ∈ Z. If for each s the induced map
grs(q) : grs(F )→ grs(F ′) is a quasi-isomorphism, then so is q.

Proof. Denoting qs the restriction of q to F s, we first show by induction on
s that Hn(qs) is bijective for all n. The assertion is clear for s = 0, since
F 0 = 0 and F ′ 0 = 0. For the inductive step, we assume that qs−1 is a quasi-
isomorphism for some s ≥ 1. We have a commutative diagram of complexes

0 // F s−1

qs−1

��

// F s

qs

��

// grs(F )

grs(q)

��

// 0

0 // F ′ s−1 // F ′ s // grs(F ′) // 0

By hypothesis and inductive assumption, in the induced diagram

Hn+1(grs(F ))

Hn+1(grs(q)) ∼=
��

// Hn(F s−1)

Hn(qs−1) ∼=
��

// Hn(F s)

Hn(qs)

��

// Hn(grs(F ))

Hn(grs(q)) ∼=
��

// Hn−1(F s−1)

Hn−1(qs−1) ∼=
��

Hn+1(grs(F ′)) // Hn(F ′ s−1) // Hn(F ′ s) // Hn(grsF ′) // Hn−1(F ′ s−1)

the four outer vertical maps are bijective. By the Five-Lemma, so is Hn(qs).
Now we fix an integer n ∈ Z, and pick s so large that

F sk = Fk and F ′ sk = F ′k hold for k = n− 1, n, n+ 1 .

The choice of s implies that Hn(F s) = Hn(F ), Hn(F ′ s) = Hn(F ′), and
Hn(qs) = Hn(q). Since we have already proved that Hn(qs) is an isomorphism,
we conclude that Hn(q) : Hn(F )→ Hn(F ′) is an isomorphism. ut
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Remark 3.3. If (F, dF ) is a complex of A-modules, then Homgr
A (F, F ) de-

notes the graded module whose n’th component consists of the A-linear maps
g : F → F with g(Fi) ⊆ Fi+n for all i ∈ Z.

If g, h are homogeneous A-linear maps, then their composition gh is ho-
mogeneous of degree deg(g) + deg(h), and so is their graded commutator

[g, h] = gh− (−1)deg g·deg hhg

Commutation is a graded derivation: for each homogeneous map h′ one has

[g, hh′] = [g, h]h′ + (−1)deg g·deg hh[g, h′]

The map h 7→ [dF , h] has square 0, and transforms Homgr
A (F, F ) into a

complex of A-modules; by definition, its cycles are the chain maps F → F ,
and its boundaries are the null-homotopic maps.

Remark 3.4. If p : F → F ′ and q : G → G′ are graded maps of graded
modules, we define the tensor product p⊗q : F ⊗F ′ → G⊗G′ by the formula
(p ⊗ q)(f ⊗ g) = (−1)deg q·deg f (p(f) ⊗ q(g)). With this convention, when
F = F ′ and G = G′, the graded commutator [1F ⊗ q, p⊗ 1G] vanishes.

Lemma 3.5. Let M be an A-module and let r : C →M be a free resolution.
If g : C → C is an A-linear map with deg(g) > 0, and [dC , g] = 0, then
g = [dC , h] for some A-linear map h : C → C with deg(h) = deg(g) + 1.

Proof. The augmentation r : C →M defines a chain map of degree zero

Homgr
A (C, r) : Homgr

A (C,C)→ Homgr
A (C,M)

The map induced in homology is an isomorphism: to see this, apply the
‘comparison theorem for projective resolutions’. Since A-linear maps C →M
of positive degree are trivial, the conclusion follows from Remark 3.3. ut

Proof (of Theorem 3.1). Recall that D is the divided powers algebra of a free
A-module Q with basis Y1, . . . , Yc, that X1, . . . , Xc is the dual basis of the
free A-module Q∗, and S for the symmetric algebra of Q∗, see Construction
2.1 for details. We set f =

∑c
i=1 fiXi ∈ S1(Q∗).

We first construct the maps dγ by induction on |γ|.
If |γ| = 0, then γ = o, so do = dC is predefined. If |γ| = 1, then γ = εi

for some i with 1 ≤ i ≤ c. Since fi annihilates the B-module M , the map
−fi · 1C lifts the zero map on M , hence is null-homotopic. For each i we take
dεi to be a null-homotopy, that is, [do, dεi ] = −fi · 1C . With these choices,
the desired formulas hold for all γ with |γ| ≤ 1.

Assume by induction that maps dγ satisfying the conclusion of the lemma
have been chosen for all γ ∈ Nc with |γ| < n, for some n ≥ 2. Fix γ ∈ Nc



14 L. L. Avramov and D. R. Grayson

with |γ| = n. Using Remark 3.3 and the induction hypothesis, we obtain[
do,

∑ +

α+β=γ

dαdβ

]
=
∑ +

α+β=γ

(
[do, dα]dβ − dα[do, dβ ]

)
=
∑ +

α+β=γ

(( ∑ +

α′+α′′=α

dα′dα′′

)
dβ − dα

( ∑ +

β′+β′′=β

dβ′dβ′′

))
=

∑ +

α′+α′′+β=γ

dα′dα′′dβ −
∑ +

α+β′+β′′=γ

dαdβ′dβ′′

= 0

The map −
∑+
α+β=γ dαdβ has degree 2|γ|− 2, so by Lemma 3.5 it is equal to

[do, dγ ] for some A-linear map dγ : C → C of degree 2|γ| − 1. Choosing such
a dγ for each γ ∈ Nc with |γ| = n, we complete the step of the induction.

From the definition of d we obtain an expression

d2 =d2
CD ⊗ 1E + 1C ⊗ [dDE , 1D ⊗ dE ] + [dCD ⊗ 1E , 1C ⊗ dDE ]+

1C ⊗ d2
DE + 1C ⊗ 1D ⊗ d2

E + [dCD ⊗ 1E , 1C ⊗ 1D ⊗ dE ]

Constructions 2.4, 2.2, and Remark 3.4 show that the maps in the second row
are equal to 0, so to prove that d2 = 0 it suffices to establish the equalities

d2
CD = −f · 1C⊗D (4)

[dDE , 1D ⊗ dE ] = f · 1D⊗E (5)
[dCD ⊗ 1E , 1C ⊗ dDE ] = 0 (6)

A direct computation with formula (1) proves equality (4) above:

d2
CD(x⊗ y) = dCD

( ∑
β∈Nc

dβ(x)⊗
(
Xβ y y

))

=
∑
β∈Nc

( ∑
α∈Nc

dαdβ(x)⊗
(
Xα y

(
Xβ y y

)))
=

∑
α+β∈Nc

dαdβ(x)⊗
(
Xα+β y y

)
=

c∑
i=1

−fix⊗ (Xi y y)

= −f · (x⊗ y)

By Constructions 2.2 and 2.4, the maps 1D⊗dE and dDE are derivations
of degree −1, so the commutator [dDE , 1D⊗dE ] is a derivation of degree −2.
Every element of D ⊗A E is a product of elements 1 ⊗ Y ∧i of degree 1 and
Y

(k)
j ⊗ 1 of degree 2k, so it suffices to check that the map on either side of
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(6) takes the same value on those elements. For degree reasons, both sides
vanish on 1⊗ Y ∧i . We now complete the proof of equality (5) as follows:

[dDE , 1E ⊗ dE ]
(
Y

(k)
j ⊗ 1

)
= dDE

(
(1D ⊗ dE)

(
Y

(k)
j ⊗ 1

))
+ (1E ⊗ dE)

(
dDE

(
Y

(k)
j ⊗ 1

))
= (1E ⊗ dE)

(
Y

(k−1)
j ⊗ Y ∧j

)
= Y

(k−1)
j ⊗ fj

= f ·
(
Y

(k)
j ⊗ 1

)
To derive equation (6) we use Constructions 2.2 and 2.4 once again:(
(dCD ⊗ 1E)(1C ⊗ dDE)

)
(x⊗ y ⊗ z)

=(−1)deg xdCD

( c∑
i=1

x⊗ (Xi y y)⊗ (Y ∧i · z)
)

=(−1)deg x
c∑
i=1

∑
γ∈Nc

dγ(x)⊗
(
Xγ y(Xi y y)

)
⊗ (Y ∧i · z)

=−
∑
γ∈Nc

c∑
i=1

(−1)deg(dγ(x))dγ(x)⊗
(
Xi y(Xγ y y)

)
⊗ (Y ∧i · z)

=−
(
1C ⊗ dDE

)( ∑
γ∈Nc

dγ(x)⊗ (Xγ y y)⊗ z
)

=−
(
(1C ⊗ dDE)(dCD ⊗ 1E)

)
(x⊗ y ⊗ z)

It remains to show q is a quasi-isomorphism. Setting

F s =
⊕
k+`≤s

C ⊗A Dk(Q)⊗A
∧`(Q∧) for s ∈ Z

we obtain a bounded filtration of the complex F = (C ⊗A D ⊗A E, d). On
the other hand, we let F ′ denote the complex with F ′0 = M and F ′n = 0 for
n 6= 0; the filtration defined by F ′ 0 = 0 and F ′ s = F ′ for s ≥ 1 is obviously
bounded, and q(F s) ⊆ F ′ s holds for all s ≥ 0. By Lemma 3.2 it suffices to
show that the induced map grs(q) : grs(F )→ grs(F ′) is bijective for all s.

Inspection of the differential d of F shows that grs(F ) is isomorphic to
the tensor product of complexes C ⊗A Gs, where Gs is the complex defined
in Lemma 2.5. It is established there that Gs is is split exact for s > 0, hence
Hn(C ⊗A Gs) = 0 for all n ∈ Z. As G0 = A and gr0(q) = r, we are done. ut

4 Cohomology Operators

We present a new approach to the procedure of Shamash [15] and Eisenbud
[11] for building projective resolutions over a complete intersection. We then
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use this resolution to prove a fundamental result of Gulliksen [12] on the
structure of Ext modules over complete intersections.

A set f = {f1, . . . , fc} ⊆ A is Koszul-regular if the complex (E, dE) of
Construction 2.2, has Hn(E) = 0 for n > 0. A sufficient condition for Koszul-
regularity is that the elements of f , in some order, form a regular sequence.

Theorem 4.1. Let A be a commutative ring, f = {f1, . . . , fc} ⊆ A a subset,
B = A/(f) the residue ring, M a B-module, and r : C → M a resolution of
M by projective (respectively, free) A-modules.

Let {dγ : C → C}γ∈Nc be a family of A-linear maps provided by Theorem
3.1, set D′ = D ⊗A B, and y′ = y ⊗ 1 for y ∈ D. The map

∂ : C ⊗A D′ → C ⊗A D′ given by

∂(x⊗ y′) =
∑
γ∈Nc

dγ(x)⊗ (Xγ y y)′ (7)

is a B-linear differential of degree −1. If f is Koszul-regular, then the map

q′ : C ⊗A D′ →M given by

q′(x⊗ y′) =

{
y · r(x) if deg(y′) = 0
0 otherwise

is a resolution of M by projective (respectively, free) A-modules.

Remark 4.2. Assume that in the theorem f = {f1}. The module D` is then
trivial if ` is odd, and is free with basis consisting of a single element Y (`/2)

1

if ` is even. Thus, the resolution C ⊗A D′ has the form

· · · ∂2n+1−−−−→
∞⊕
j=0

C2j ⊗A BY (n−j)
1

∂2n−−→
∞⊕
j=1

C2j−1 ⊗A BY (n−j)
1

∂2n−1−−−−→ · · ·

The simplest situation occurs when, in addition, C is a free resolution
with Cn = 0 for n ≥ 2. In this case the differential do has a single non-
zero component, d1 : C1 → C0, the homotopy dε1 between −f · 1C and 0C
has a single non-zero component, s0 : C0 → C1, and all the maps dγ with
γ ∈ N1

r {o, ε1} are trivial for degree reasons. It is now easy to see that the
complex above coincides with the one constructed, ad hoc, in Remark 1.6.

Proof (of the theorem). In the notation of Theorem 3.1, we have equalities

C ⊗A D′ = (C ⊗A D ⊗A E)⊗E B and ∂ = d⊗ 1B

It follows that ∂2 = 0. For each s ≥ 0 consider the subcomplexes

F s =
⊕
k+`≤s

Ck ⊗A D` ⊗A E of F = C ⊗A D ⊗A E

F ′ s =
⊕
k+`≤s

Ck ⊗A D′` of F ′ = C ⊗A D′
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They provide bounded filtrations of the complexes F and F ′, respectively,
such that the map p′ = 1C ⊗ 1D ⊗ p : F → F ′ satisfies p′(F s) ⊆ F ′ s for
all s ≥ 0. Setting Gs =

⊕
k+`=s(Ck ⊗A D`), we obtain equalities grs(F ) =

(Gs⊗AE, 1Gs ⊗ dE) and grs(F ′) = (Gs⊗AB, 0) of complexes of A-modules.
If f is Koszul regular, then p : E → B is a quasi-isomorphism, hence so

is 1Gs ⊗ p = grs(p′) for each s ≥ 0. Lemma 3.2 then shows that p′ is a quasi-
isomorphism. The quasi-isomorphism q : F → M of Theorem 3.1 factors as
q = q′(1C ⊗ 1D ⊗ p), so we see that q′ is a quasi-isomorphism, as desired. ut

Let M and N be B-modules, and let Ext•B(M,N) denote the graded B-
module having ExtnB(M,N) as component of degree −n. To avoid negative
numbers, it is customary to regrade Ext•B(M,N) by cohomological degree,
under which the elements of ExtnB(M,N) are assigned degree n; we do not
do it here, in order not to confuse Macaulay 2. Of course, these modules can
be computed from any projective resolution of M over B.

The next couple of remarks collect a few innocuous observations. In hind-
sight, they provide some of the basic tools for studying cohomology of modules
over complete intersections: see Remark 4.6 for some related material.

Remark 4.3. The resolution (C ⊗A D′, ∂) provided by Theorem 4.1 is a
graded module over the graded algebra S, with action defined by the formula

u · (x⊗ y′) = x⊗ (u y y)′

and this action commutes with the differential ∂. The induced action provides
a structure of graded S-module on the complex HomB(C ⊗A D′, N).

The action of S commutes with the differential ∂∗ = HomB(∂,N) of this
complex, hence passes to its homology, making it a graded a S-module. Thus,
each element u ∈ S−2k = Sk(Q) determines homomorphisms

ExtnB(M,N) u−−→ Extn+2k
B (M,N) for all n ∈ Z

For this reason, from now on we refer to the graded ring S as the ring of
cohomology operators determined by the Koszul-regular set f .

Remark 4.4. The canonical isomorphisms of complexes of A-modules

HomB(C ⊗A D′, N) = S ⊗A HomA(C,N) = S ⊗A HomA(C,A)⊗A N

commute with the actions of S.

The following fundamental result shows that in many important cases the
action of the cohomology operators is highly nontrivial.

Theorem 4.5. Let A be a commutative ring, let f be a Koszul regular subset
of A, and let S be the graded ring of cohomology operators defined by f .

If M and N are finitely generated modules over B = A/(f), and M has
finite projective dimension over A (in particular, if A is regular), then the
graded S-module Ext•B(M,N) is finitely generated.
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Proof. Choose a resolution r : C →M with Cn a finite projective A-module
for each n and Cn = 0 for all n� 0. By Remark (4.4), the graded S-module
HomB(C ⊗A D′, N) is finitely generated. Since S is noetherian, so is the
submodule Ker(∂∗), and hence the homology module, Ext•B(M,N). ut

Remark 4.6. The resolution of Remark 4.2 was constructed by Shamash
[15, Sect. 3], that of Theorem 4.1 by Eisenbud [11, Sect. 7]. The new aspect
of our approach is indicated at the beginning of Section 3.

As introduced in Remark 4.3, the S-module structure on Ext may appear
ad hoc. In fact, it is independent of all choices of resolutions and maps, it can
be computed from any projective resolution of M over B, it is natural in both
module arguments and—in an appropriate sense—in the ring argument, and
it commutes with Yoneda products from either side. These properties were
proved by Gulliksen [12, Sect. 2], Mehta [13, Ch. 2], Eisenbud [11, Sect. 4],
and Avramov [2, Sect. 2]. However, each author used a different construction
of cohomology operators, and comparison of the different approaches has
turned to be an unexpectedly delicate problem. It was finally resolved in [8],
where complete proofs of the main properties of the operators can be found.

Gulliksen [12, Sect. 3] established a stronger form of Theorem 4.5, without
finiteness hypotheses on the ring A: If the A-module Ext•A(M,N) is noethe-
rian, then the S-module Ext•B(M,N) is noetherian; this can be obtained
from the complexes of Remark (4.4) by means of a spectral sequence, cf. [4,
Sect. 6]. The converse of Gulliksen’s theorem was proved in [6, Sect. 4].

For the rest of the paper we place ourselves in a situation where Mac-
aulay 2 operates best—graded modules over positively graded rings. This
grading is inherited by the various Ext modules, and we keep careful track
of it. Our conventions and bookkeeping procedures are discussed in detail in
an Appendix, which the reader is invited to consult as needed.

For ease of reference, we collect some notation.

Notation 4.7. The following is assumed for the rest of the paper.

• K is a field.
• {xh | deg′(xh) > 0}h=1,...,e is a set of indeterminates over K.
• A = K[x1, . . . , xe], graded by deg′(a) = 0 for a ∈ K.
• f1, . . . , fc is a homogeneous A-regular sequence in (x1, . . . , xe)2.
• ri = deg′(fi) for i = 1, . . . , c.
• {Xi | DegXi = (−2,−ri)}i=1,...,c is a set of indeterminates over A.
• S = A[X1, . . . , Xc], bigraded by Deg(a) = (0,deg′(a)).
• B = A/(f), with degree induced by deg′.
• M and N are finitely generated graded B-modules.
• S acts as bigraded ring of cohomology operators on Ext•B(M,N).
• k = B/(x1, . . . , xe)B, with degree induced by deg′.
• R = S ⊗A k ∼= K[X1, . . . , Xc], with bidegree induced by Deg.
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Remark 4.8. Under the conditions above, it is reasonable to ask when the
B-free resolution G of Theorem 4.1, obtained from a minimal A-free reso-
lution C of M , will itself be minimal. Shamash [15, Sect. 3] proves that G
is minimal if fi ∈ (x1, . . . , xe)annA(M) for i = 1, . . . , c. An obvious example
with non-minimal G occurs when M has finite projective dimension over B:
if c > 0 then G is infinite. A more interesting failure of minimality follows.

Example 4.9. Let A, f , B, and M be as in Example 1.5.
i38 : M = B^1/m^3;

i39 : F = resolution(M, LengthLimit=>8)

1 10 16 15 15 15 15 15 15
o39 = B <-- B <-- B <-- B <-- B <-- B <-- B <-- B <-- B

0 1 2 3 4 5 6 7 8

o39 : ChainComplex

Thus, the sequence of Betti numbers βBn (M) is (1, 10, 16, 15, 15, 15, . . . ).
i40 : M’ = restrict1 M;

i41 : C = res M’

1 10 15 6
o41 = A <-- A <-- A <-- A <-- 0

0 1 2 3 4

o41 : ChainComplex

By Remark 4.2, the sequence rankB Fn is (1, 10, 16, 16, 16, 16, . . . ).

In a graded context, all cohomological entities discussed so far in the text
acquire an extra grading, discussed in detail in the Appendix. The notions
below are used, but not named, in [5] in a local situation.

Remark 4.10. We define the reduced Ext module for M and N over B by

ext•B(M,N) = Ext•B(M,N)⊗A k

With the induced bigrading and action, it is a bigraded module over the
bigraded ring R, that we call the reduced ring of cohomology operators.

The dimension of the K-vector space extnB(M,N)s is equal to the number
of generators of bidegree (−n, s) in any minimal set of generators of the
graded B-module ExtnB(M,N). We define the graded (respectively, ungraded)
Ext-generator series of M and N to be the formal power series

GM,N
B (t, u) =

∑
n∈N , s∈Z

dimK extnB(M,N)s tnu−s ∈ Z[u, u−1][[t]]

GM,N
B (t) =

∞∑
n=0

dimK extnB(M,N) tn ∈ Z[[t]]

There is a simple relation between these series: GM,N
B (t) = GM,N

B (t, 1).



20 L. L. Avramov and D. R. Grayson

Corollary 4.11. In the notation above, ext•B(M,N) is a finitely generated
bigraded R-module, and GM,N

B (t, u) represents a rational function of the form

gM,N
B (t, u)

(1− t2ur1) · · · (1− t2urc)
with gM,N

B (t, u) ∈ Z[t, u, u−1]

Proof. The assertion on finite generation results from Theorem 4.5 and the
one on bigradings from Remark A.2. The form of the power series is then
given by the Hilbert-Serre Theorem. ut

5 Computation of Ext Modules

This section contains the main new computational result of the paper.
We discuss, apply, and present an algorithm that computes, for graded

modules M and N over a graded complete intersection ring B, the graded
B-modules ExtnB(M,N) simultaneously in all degrees n, along with all the
cohomology operators defined in Remark 4.3.

More precisely, the input consists of a field K, a polynomial ring A =
K[x1, . . . , xe] with deg′(xh) > 0, a sequence f1, . . . , fc of elements of A, and
finitely generated modules M , N over B = A/(f1, . . . , fc). The program
checks whether the sequence consists of homogeneous elements, whether it
is regular, and whether the modules M , N are graded, sending the appro-
priate error message if any one of these conditions is violated. If the input
data pass those tests, then the program produces a presentation of the bi-
graded module H = Ext•B(M,N), where the elements of ExtnB(M,N) have
homological degree −n, over the polynomial ring A[X1, . . . , Xc], bigraded by
Deg(a) = (0,deg′(a)) and Deg(Xi) = (−2,−deg′(fi)).

The algorithm is based on the proofs of Theorems 4.1 and 4.5, and is
presented in Code 5.4 below. We start with an informal discussion.

Remark 5.1. The routine resolution of Macaulay 2 finds the matrices
do,n : Cn → Cn−1 of the differential dC of a minimal free resolution C of M
over A. Matrices dγ,n : Cn → Cn+2|γ|−1 satisfying equation (1) for γ ∈ Nc
with |γ| > 0 are computed using the routine nullhomotopy of the Macaulay 2
language in a loop that follows the first part of the proof of Theorem 4.1.

The transposed matrix d∗γ,n yields an endomorphism of the free bigraded
A-module C∗ =

⊕e
n=0 HomA(Cn, A) of rank m, where m =

∑e
n=0 rankA Cn.

The m × m matrix d̃∗γ,n describing this endomorphism is formed using the
routines transpose and sum. The m×m matrix

∆ =
e∑

n=0

(−1)n+2|γ|−1
∑
γ∈Nc

|γ|≤(e−n+1)/2

Xγ · d̃∗γ,n

with entries in S = A[X1, . . . , Xc] defines an endomorphism of the free bi-
graded S-module S ⊗A C∗. It induces an endomorphism ∆ of the bigraded
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S-module S ⊗A C∗ ⊗AN . The bigraded S-module H = Ext•B(M,N) is com-
puted as H = Ker(∆)/ Im(∆) using the routine homology.

In the computations we let H denote the bigraded S-module Ext•B(M,N).
As the graded ring S is zero in odd homological degrees, there is a canonical
direct sum decomposition H = Heven ⊕Hodd of bigraded S-modules, where
‘even’ or ‘odd’ refers to the parity of the first degree in each pair Deg(x).

We begin with an example in codimension 1, where it is possible to con-
struct the infinite resolution and the action of S on it by hand.

Example 5.2. Consider the ring A = K[x] where the variable x is assigned
degree 5, and set B = A/(x3). The bigraded ring of cohomology operators
then is S = A[X,x], where Deg(X) = (−2,−15) and Deg x = (0, 5).

For the B-modules M = B/(x2) and N = B/(x), the bigraded S-module
H = Ext•B(M,N) is described by the isomorphism

H ∼= (S/(x))⊕ (S/(x))[1, 10]

A minimal free resolution of M over B is displayed below.

F = . . . −→ B[−30] −x−−→ B[−25] x2

−−→ B[−15] −x−−→ B[−10] x2

−−→ B −→ 0

This resolution is actually isomorphic to the resolution C⊗AD′ described in
Remark 4.2, formed from the free resolution

C = 0 −→ A[−10] x2

−−→ A −→ 0

of M over A and the nullhomotopy dε1 displayed in the diagram

0 // A[−10] x2
//

−x3

��

A //

−x3

��

−x

||yyyyyyyyy
0

0 // A[−10] x2
// A // 0

The isomorphism of F with C ⊗A D′ endows F with a structure of bigraded
module over S, where the action of X on F is the chain map F → F of ho-
mological degree −2 and internal degree −15 that corresponds to the identity
map of B in each component.

The bigraded S-module H = Ext•B(M,N) is the homology of the complex

HomR(F,N) = 0 −→ N
0−−→ N [10] 0−→ N [15] 0−−→ N [25] 0−→ N [30] −→ · · ·

where multiplication by x ∈ S is the zero map, and for each i ≥ 0 multi-
plication by X ∈ S sends N [15i] to N [15i + 15] (respectively, N [10i + 10]
to N [10i + 25]) by the identity map. This description provides the desired
isomorphisms of bigraded S-modules.

Here is how to compute H with Macaulay 2.
Create the rings and modules.
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i42 : K = ZZ/103;

i43 : A = K[x,Degrees=>{5}];

i44 : B = A/(x^3);

i45 : M = B^1/(x^2);

i46 : N = B^1/(x);

Use the function Ext to compute H = Ext•B(M,N) (the semicolon at the end
of the line will suppress printing until we have assigned the name S to the
ring of cohomology operators constructed by Macaulay 2.)

i47 : H = Ext(M,N);

We may look at the ring.
i48 : ring H

o48 = K [$X , x, Degrees => {{-2, -15}, {0, 5}}]
1

o48 : PolynomialRing

Macaulay 2 has assigned the name $X_1 to the variable X. The dollar sign
indicates an internal name that cannot be entered from the keyboard: if neces-
sary, obtain the variable by entering S_0; notice that indexing in Macaulay 2
starts with 0 rather than 1. Notice also the appearance of braces rather than
parentheses in Macaulay 2’s notation for bidegrees.

i49 : degree \ gens ring H

o49 = {{-2, -15}, {0, 5}}

o49 : List

Assign the ring a name.
i50 : S = ring H;

We can now look at the S-module H.
i51 : H

o51 = cokernel {0, 0} | 0 x |
{-1, -10} | x 0 |

2
o51 : S-module, quotient of S

Each row in the display above is labeled with the bidegree of the correspond-
ing generator of H. This presentation gives the isomorphisms of bigraded
S-modules, already computed by hand earlier.

Let’s try an example with a complete intersection of codimension 2. It is
not so easy to do by hand, but can be checked using the theory in [4].

Example 5.3. Begin by constructing a polynomial ring A = K[x, y].
i52 : A = K[x,y];

Now we produce a complete intersection quotient ring B = A/(x3, y2).
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i53 : J = ideal(x^3,y^2);

o53 : Ideal of A

i54 : B = A/J;

We take N to be the B-module B/(x2, xy).
i55 : N = cokernel matrix{{x^2,x*y}}

o55 = cokernel | x2 xy |

1
o55 : B-module, quotient of B

Remark A.1 shows that H = Ext•B(N,N) is a bigraded module over the
bigraded ring S = A[X1, X2] = K[X1, X2, x, y] where

Deg(X1) = (−2,−3) Deg(X2) = (−2,−2)
Deg(x) = (0, 1) Deg(y) = (0, 1)

Using Macaulay 2 (below) we obtain an isomorphism of bigraded S-modules

Heven ∼=
S

(x2, xy, y2, xX1, yX1)
⊕ S

(x, y)
[2, 2]

Hodd ∼=
(

S

(x, y,X1)
⊕ S

(x, y)

)2

[1, 1]

These isomorphisms also yield expressions for the graded B-modules:

Ext2i
B (N,N) ∼= N ·Xi

2 ⊕
i⊕

h=1

k ·Xh
1X

i−h
2 ⊕

i−1⊕
h=0

k[2] ·Xh
1X

i−1−h
2

Ext2i+1
B (N,N) ∼=

(
k[1] ·Xi

2 ⊕
i⊕

h=0

k[1] ·Xi−h
1 Xh

2

)2

Now we follow in detail the computation of the bigraded S-module H.
i56 : time H = Ext(N,N);

-- used 0.2 seconds

i57 : ring H

o57 = K [$X , $X , x, y, Degrees => {{-2, -2}, {-2, -3}, {0, 1}, {0, 1}}]
1 2

o57 : PolynomialRing

i58 : S = ring H;

One might wish to have a better view of the bidegrees of the variables of the
ring S. An easy way to achieve this, with signs reversed, is to display the
transpose of the matrix of variables.

i59 : transpose vars S
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o59 = {2, 2} | $X_1 |
{2, 3} | $X_2 |
{0, -1} | x |
{0, -1} | y |

4 1
o59 : Matrix S <--- S

The internal degrees displayed for the cohomology operators may come as
a surprise. To understand what is going on, recall that these degrees are
determined by a choice of minimal generators for J . At this point we do
not know what is the sequence of generators that Macaulay 2 used, so let’s
compute those generators the way the program did.

i60 : trim J

2 3
o60 = ideal (y , x )

o60 : Ideal of A

Notice that Macaulay 2 has reordered the original sequence of generators.
Now we see that our variable X1, which corresponds to x3, is denoted X_2
by Macaulay 2, and that X2, which corresponds to y2 is denoted X_1. This
explains the bidegrees used by the program.

Display H.
i61 : H

o61 = cokernel {-2, -2} | 0 0 0 0 0 0 0 0 0 0 0 y x 0 0 0 · · ·
{-1, -1} | y 0 0 0 0 x 0 0 0 0 0 0 0 $X_1 0 0 · · ·
{-1, -1} | 0 0 0 y 0 0 0 x 0 0 0 0 0 0 $X_1 0 · · ·
{-1, -1} | 0 y 0 0 x 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-1, -1} | 0 0 y 0 0 0 x 0 0 0 0 0 0 0 0 0 · · ·
{0, 0} | 0 0 0 0 0 0 0 0 y2 xy x2 0 0 0 0 $X_1y · · ·

6
o61 : S-module, quotient of S

That’s a bit large, so we want to look at the even and odd parts separately.
We may compute the even and odd parts of H as the span of the genera-

tors of H with the appropriate parity. Since the two desired functions differ
only in the predicate to be applied, we can generate them both by writing a
function that accepts the predicate as its argument and returns a function.

i62 : partSelector = predicate -> H -> (
R := ring H;
H’ := prune image matrix {

select(
apply(numgens H, i -> H_{i}),
f -> predicate first first degrees source f
)

};
H’);

i63 : evenPart = partSelector even; oddPart = partSelector odd;

Now to obtain the even part, Heven, simply type
i65 : evenPart H
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o65 = cokernel {-2, -2} | 0 0 0 y x 0 0 |
{0, 0} | y2 xy x2 0 0 $X_1y $X_1x |

2
o65 : S-module, quotient of S

Do the same thing for the odd part, Hodd.
i66 : oddPart H

o66 = cokernel {-1, -1} | 0 0 y 0 0 0 x 0 0 0 |
{-1, -1} | 0 y 0 0 x 0 0 0 0 0 |
{-1, -1} | 0 0 0 y 0 0 0 x 0 $X_1 |
{-1, -1} | y 0 0 0 0 x 0 0 $X_1 0 |

4
o66 : S-module, quotient of S

These presentations yield the desired isomorphism of bigraded S-modules.

Here is the source code which implements the routine Ext. It is incorpo-
rated into Macaulay 2.

Code 5.4. The function Ext(M,N) computes Ext•B(M,N) for graded mod-
ules M , N over a graded complete intersection ring B. The function code
can be used to obtain a copy of the source code.

i67 : print code(Ext,Module,Module)
-- ../../../m2/ext.m2:82-171
Ext(Module,Module) := Module => (M,N) -> (

cacheModule := youngest(M,N);
cacheKey := (Ext,M,N);
if cacheModule#?cacheKey then return cacheModule#cacheKey;
B := ring M;
if B =!= ring N
then error "expected modules over the same ring";
if not isCommutative B
then error "’Ext’ not implemented yet for noncommutative rings.";
if not isHomogeneous B
then error "’Ext’ received modules over an inhomogeneous ring";
if not isHomogeneous N or not isHomogeneous M
then error "’Ext’ received an inhomogeneous module";
if N == 0 then B^0
else if M == 0 then B^0
else (

p := presentation B;
A := ring p;
I := ideal mingens ideal p;
n := numgens A;
c := numgens I;
if c =!= codim B
then error "total Ext available only for complete intersections";
f := apply(c, i -> I_i);
pM := lift(presentation M,A);
pN := lift(presentation N,A);
M’ := cokernel ( pM | p ** id_(target pM) );
N’ := cokernel ( pN | p ** id_(target pN) );
C := complete resolution M’;
X := local X;
K := coefficientRing A;
-- compute the fudge factor for the adjustment of bidegrees
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fudge := if #f > 0 then 1 + max(first \ degree \ f) // 2 else 0;
S := K(monoid [X_1 .. X_c, toSequence A.generatorSymbols,

Degrees => {
apply(0 .. c-1, i -> {-2, - first degree f_i}),
apply(0 .. n-1, j -> { 0, first degree A_j})
},

Adjust => v -> {- fudge * v#0 + v#1, - v#0},
Repair => w -> {- w#1, - fudge * w#1 + w#0}
]);

-- make a monoid whose monomials can be used as indices
Rmon := monoid [X_1 .. X_c,Degrees=>{c:{2}}];
-- make group ring, so ’basis’ can enumerate the monomials
R := K Rmon;
-- make a hash table to store the blocks of the matrix
blks := new MutableHashTable;
blks#(exponents 1_Rmon) = C.dd;
scan(0 .. c-1, i ->

blks#(exponents Rmon_i) = nullhomotopy (- f_i*id_C));
-- a helper function to list the factorizations of a monomial
factorizations := (gamma) -> (

-- Input: gamma is the list of exponents for a monomial
-- Return a list of pairs of lists of exponents showing the
-- possible factorizations of gamma.
if gamma === {} then { ({}, {}) }
else (

i := gamma#-1;
splice apply(factorizations drop(gamma,-1),

(alpha,beta) -> apply (0..i,
j -> (append(alpha,j), append(beta,i-j))))));

scan(4 .. length C + 1,
d -> if even d then (

scan( exponents \ leadMonomial \ first entries basis(d,R),
gamma -> (

s := - sum(factorizations gamma,
(alpha,beta) -> (

if blks#?alpha and blks#?beta
then blks#alpha * blks#beta
else 0));

-- compute and save the nonzero nullhomotopies
if s != 0 then blks#gamma = nullhomotopy s;
))));

-- make a free module whose basis elements have the right degrees
spots := C -> sort select(keys C, i -> class i === ZZ);
Cstar := S^(apply(spots C,

i -> toSequence apply(degrees C_i, d -> {i,first d})));
-- assemble the matrix from its blocks.
-- We omit the sign (-1)^(n+1) which would ordinarily be used,
-- which does not affect the homology.
toS := map(S,A,apply(toList(c .. c+n-1), i -> S_i),

DegreeMap => prepend_0);
Delta := map(Cstar, Cstar,

transpose sum(keys blks, m -> S_m * toS sum blks#m),
Degree => {-1,0});

DeltaBar := Delta ** (toS ** N’);
assert isHomogeneous DeltaBar;
assert(DeltaBar * DeltaBar == 0);
-- now compute the total Ext as a single homology module
cacheModule#cacheKey = prune homology(DeltaBar,DeltaBar)))
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Remark 5.5. The bigraded module TorB• (M,N) is the homology of the
complex (C ⊗A D′) ⊗B N , where C ⊗A D′ is the complex from Theorem
4.1. Observations parallel to Remarks 4.3 and A.1 show that TorB• (M,N)
inherits from D′ a structure of bigraded S-module.

It would be desirable also to have algorithms to compute TorB• (M,N)
in the spirit of the algorithm presented above for Ext•B(M,N). If one of
the modules has finite length, then each TorBn (M,N) is a B-module of finite
length, and the computation of TorB• (M,N) can be reduced to a computation
of Ext by means of Matlis duality, which here can be realized as vector space
duality over the field K. However, in homology there is no equivalent for the
finiteness property described in Remark 4.4; it is an open problem to devise
algorithms that would compute TorB• (M,N) in general.

6 Invariants of Modules

In this section we apply our techniques to develop effective methods for com-
putation (for graded modules over a graded complete intersection) of invari-
ants such as cohomology modules, Poincaré series, Bass series, complexity,
critical degree, and support varieties. For each invariant we produce code that
computes it, and illustrate the action of the code on some explicit example.

Whenever appropriate, we describe open problems on which the com-
putational power of Macaulay 2 could be unleashed.

Notation 4.7 is used consistently throughout the section.

6.1 Cohomology Modules

We call the bigraded R-module P = Ext•B(M,k) the contravariant cohomol-
ogy module of M over B, and the bigraded R-module I = Ext•B(k,M) the
covariant cohomology module of M . Codes that display presentations of the
cohomology modules are presented after a detailed discussion of an example.

Example 6.1.1. Let us create the ring B = K[x, y, z]/(x3, y4, z5).
i68 : A = K[x,y,z];

i69 : J = trim ideal(x^3,y^4,z^5)

3 4 5
o69 = ideal (x , y , z )

o69 : Ideal of A

i70 : B = A/J;

We trimmed the ideal, so that we know the generators Macaulay 2 will use.
This time we want a graded B-module M about whose homology we know

nothing a priori. One way to proceed is to create M as the cokernel of some
random matrix of forms; let’s try a 3 by 2 matrix of quadratic forms.
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i71 : f = random (B^3, B^{-2,-3})

o71 = | 27x2+49xy-14y2-23xz-6yz-19z2 38x2y-34xy2+4y3+x2z+16xyz-y2z-5xz · · ·
| -5x2+44xy+38y2+40xz+15yz+4z2 -37x2y+51xy2-36y3+26x2z-38xyz-17y · · ·
| 21x2-30xy+32y2-47xz+7yz-50z2 -6x2y-14xy2-26y3-7x2z+41xyz+50y2z · · ·

3 2
o71 : Matrix B <--- B

We can’t read the second column of that matrix, so let’s display it separately.
i72 : f_{1}

o72 = | 38x2y-34xy2+4y3+x2z+16xyz-y2z-5xz2-6yz2+47z3 |
| -37x2y+51xy2-36y3+26x2z-38xyz-17y2z+17xz2-11yz2+8z3 |
| -6x2y-14xy2-26y3-7x2z+41xyz+50y2z+26xz2+46yz2-44z3 |

3 1
o72 : Matrix B <--- B

Now let’s make the module M .
i73 : M = cokernel f;

We are going to produce isomorphisms of bigraded modules

P even ∼= R[4, 10]⊕ (X1, X2)[2, 7]⊕
(

R

(X1, X2, X3)

)3

⊕R4[2, 7]

P odd ∼=
R

(X1, X2, X3)
[1, 2]⊕

(
R

(X1)

)3

[3, 9]⊕ R

(X1, X2)
[1, 3]⊕R6[3, 9]

over the polynomial ring R = K[X1, X2, X3] over K, bigraded by

Deg(X1) = (−2,−3) Deg(X2) = (−2,−4) Deg(X3) = (−2,−5)

Let’s compute Ext•B(M,B/(x, y, z)) by the routine from Section 5.
i74 : time P = Ext(M,B^1/(x,y,z));

-- used 1.64 seconds

i75 : S = ring P;

Examine the variables of S; due to transposing, their bidegrees are displayed
with the opposite signs.

i76 : transpose vars S

o76 = {2, 3} | $X_1 |
{2, 4} | $X_2 |
{2, 5} | $X_3 |
{0, -1} | x |
{0, -1} | y |
{0, -1} | z |

6 1
o76 : Matrix S <--- S

The variables x, y, and z of A annihilate P , and so appear in many places in
a presentation of P . To reduce the size of such a presentation, we pass to a
ring which eliminates those variables.
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i77 : R = K[X_1..X_3,Degrees => {{-2,-3},{-2,-4},{-2,-5}},
Adjust => S.Adjust, Repair => S.Repair];

i78 : phi = map(R,S,{X_1,X_2,X_3,0,0,0})

o78 = map(R,S,{X , X , X , 0, 0, 0})
1 2 3

o78 : RingMap R <--- S

i79 : P = prune (phi ** P);

i80 : transpose vars ring P

o80 = {2, 3} | X_1 |
{2, 4} | X_2 |
{2, 5} | X_3 |

3 1
o80 : Matrix R <--- R

As we planned, the original variables x, y, z, which act trivially on the coho-
mology, are no longer present in the ring. Next we compute presentations

i81 : evenPart P

o81 = cokernel {-4, -10} | 0 0 0 0 0 0 0 0 0 0 |
{-4, -10} | 0 0 0 0 0 0 0 0 0 -X_2 |
{-4, -11} | 0 0 0 0 0 0 0 0 0 X_1 |
{0, 0} | 0 0 X_3 0 0 X_2 0 X_1 0 0 |
{0, 0} | 0 X_3 0 0 X_2 0 X_1 0 0 0 |
{0, 0} | X_3 0 0 X_2 0 0 0 0 X_1 0 |
{-2, -7} | 0 0 0 0 0 0 0 0 0 0 |
{-2, -7} | 0 0 0 0 0 0 0 0 0 0 |
{-2, -7} | 0 0 0 0 0 0 0 0 0 0 |
{-2, -7} | 0 0 0 0 0 0 0 0 0 0 |

10
o81 : R-module, quotient of R

i82 : oddPart P

o82 = cokernel {-1, -2} | X_3 0 X_2 0 0 0 0 X_1 |
{-3, -9} | 0 0 0 0 0 0 X_1 0 |
{-3, -9} | 0 0 0 0 0 X_1 0 0 |
{-3, -9} | 0 0 0 0 X_1 0 0 0 |
{-1, -3} | 0 X_2 0 X_1 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |

11
o82 : R-module, quotient of R

These presentations yield the desired isomorphisms of bigraded R-modules.

The procedure above can be automated by installing a method that will
be run when Ext is presented with a module M and the residue field k. It
displays a presentation of Ext•B(M,k) as a bigraded R-module.
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Code 6.1.2. The function changeRing H takes an S-module H and tensors
it with R. It does this by constructing R and a ring homomorphism

ϕ : A[X1, . . . , Xc] = S → R = K[X1, . . . , Xc]

i83 : changeRing = H -> (
S := ring H;
K := coefficientRing S;
degs := select(degrees source vars S,

d -> 0 != first d);
R := K[X_1 .. X_#degs, Degrees => degs,

Repair => S.Repair, Adjust => S.Adjust];
phi := map(R,S,join(gens R,(numgens S - numgens R):0));
prune (phi ** H)
);

Code 6.1.3. The function Ext(M,k) computes Ext•B(M,k) when B is a
graded complete intersection, M a graded B-module, and k is the residue
field of B. The result is presented as a module over the ring k[X1, . . . , Xc].

i84 : Ext(Module,Ring) := (M,k) -> (
B := ring M;
if ideal k != ideal vars B
then error "expected the residue field of the module";
changeRing Ext(M,coker vars B)
);

Example 6.1.4. For a test, we run again the computation for P odd.
i85 : use B;

i86 : k = B/(x,y,z);

i87 : use B;

i88 : P = Ext(M,k);

i89 : time oddPart P
-- used 0.09 seconds

o89 = cokernel {-1, -2} | X_3 0 X_2 0 0 0 0 X_1 |
{-3, -9} | 0 0 0 0 0 0 X_1 0 |
{-3, -9} | 0 0 0 0 0 X_1 0 0 |
{-3, -9} | 0 0 0 0 X_1 0 0 0 |
{-1, -3} | 0 X_2 0 X_1 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |
{-3, -9} | 0 0 0 0 0 0 0 0 |

· · ·
o89 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-module · · ·

1 2 3 · · ·

We also introduce code for computing the covariant cohomology modules.

Code 6.1.5. The function Ext(k,M) computes Ext•B(k,M) when B is a
graded complete intersection, M a graded B-module, and k is the residue
field of B. The result is presented as a module over the ring k[X1, . . . , Xc].
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i90 : Ext(Ring,Module) := (k,M) -> (
B := ring M;
if ideal k != ideal vars B
then error "expected the residue field of the module";
changeRing Ext(coker vars B,M)
);

Let’s see the last code in action.

Example 6.1.6. For B and M from Example 6.1.1 we compute the odd part
of the covariant cohomology module Ext•B(k,M).

i91 : time I = Ext(k,M);
-- used 14.81 seconds

i92 : evenPart I

o92 = cokernel {0, 6} | 37X_2 37X_1 |
{0, 6} | -18X_2 -18X_1 |
{0, 6} | -13X_2 -13X_1 |
{0, 6} | -37X_2 -37X_1 |
{0, 6} | 22X_2 22X_1 |
{0, 6} | 0 0 |
{0, 6} | X_2 X_1 |

· · ·
o92 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-module · · ·

1 2 3 · · ·
i93 : oddPart I

o93 = cokernel {-1, 5} | -48X_3 13X_3 34X_3 3X_3 0 0 0 · · ·
{-1, 5} | 3X_3 -40X_3 8X_3 8X_3 0 0 0 · · ·
{-1, 5} | -X_3 37X_3 -13X_3 -35X_3 0 0 0 · · ·
{-1, 4} | 4X_2 20X_2 3X_2 -47X_2 4X_1 20X_1 3X_1 · · ·
{-1, 4} | 0 51X_2 0 -30X_2 0 51X_1 0 · · ·
{-1, 4} | 0 12X_2 0 -3X_2 0 12X_1 0 · · ·
{-1, 4} | 42X_2 12X_2 46X_2 25X_2 42X_1 12X_1 46X_ · · ·
{-1, 4} | 45X_2 24X_2 -14X_2 -35X_2 45X_1 24X_1 -14X · · ·
{-1, 4} | 0 0 X_2 0 0 0 X_1 · · ·
{-1, 4} | X_2 0 0 0 X_1 0 0 · · ·
{-1, 4} | 0 -40X_2 0 10X_2 0 -40X_1 0 · · ·
{-1, 4} | 0 X_2 0 0 0 X_1 0 · · ·
{-1, 3} | 0 0 0 X_1 0 0 0 · · ·

· · ·
o93 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-module · · ·

1 2 3 · · ·

6.2 Poincaré Series

The graded Betti number of M over B is the number βBns(M) of direct sum-
mands isomorphic to the free module B[−s] in the n’th module of a minimal
free resolution of M over B. It can be computed from the equality

βBns(M) = dimK ExtnB(M,k)s
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The graded Poincaré series of M over B is the generating function

PBM (t, u) =
∑

n∈N , s∈Z

βBns(M) tnu−s ∈ Z[u, u−1][[t]]

It is easily computable with Macaulay 2 from the contravariant cohomology
module, by using the hilbertSeries routine.

Code 6.2.1. The function poincareSeries2 M computes the graded Poin-
caré series of a graded module M over a graded complete intersection B.

First we set up a ring whose elements can serve as Poincaré series.
i94 : T = ZZ[t,u,Inverses=>true,MonomialOrder=>RevLex];

i95 : poincareSeries2 = M -> (
B := ring M;
k := B/ideal vars B;
P := Ext(M,k);
h := hilbertSeries P;
T’:= degreesRing P;
substitute(h, {T’_0=>t^-1,T’_1=>u^-1})
);

The last line in the code above replaces the variables in the Poincaré series
provided by the hilbertSeries function with the variables in our ring T.

The nth Betti number βBn (M) of M over B is the rank of the nth module
in a minimal resolution of M by free B-modules. The Poincaré series PBM (t)
is the generating function of the Betti numbers. There are expressions

βBn (M) =
∞∑
s=0

βBns(M) and PBM (t) = PBM (t, 1)

Accordingly, the code for PBM (t) just replaces in PBM (t, u) the variable u by 1.

Code 6.2.2. The function poincareSeries1 M computes the Poincaré se-
ries of a graded module M over a graded complete intersection B.

i96 : poincareSeries1 = M -> (
substitute(poincareSeries2 M, {u=>1_T})
);

Now let’s use these codes in computations.

Example 6.2.3. To get a module whose Betti sequence initially decreases,
we form an artinian complete intersection B′ and take M ′ to be a cosyzygy in
a minimal injective resolution of the residue field k. Since B′ is self-injective,
this can be achieved by taking a syzygy of k, then transposing its presentation
matrix. Of course, we ask Macaulay 2 to carry out these steps.

i97 : A’ = K[x,y,z];

i98 : B’ = A’/(x^2,y^2,z^3);
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i99 : C’ = res(B’^1/(x,y,z), LengthLimit => 6)

1 3 6 10 15 21 28
o99 = B’ <-- B’ <-- B’ <-- B’ <-- B’ <-- B’ <-- B’

0 1 2 3 4 5 6

o99 : ChainComplex

i100 : M’ = coker transpose C’.dd_5

o100 = cokernel {-5} | -y 0 0 0 z 0 0 0 0 0 0 0 0 0 0 |
{-5} | -x -y 0 0 0 z 0 0 0 0 0 0 0 0 0 |
{-5} | 0 x -y 0 0 0 z 0 0 0 0 0 0 0 0 |
{-5} | 0 0 x -y 0 0 0 z 0 0 0 0 0 0 0 |
{-5} | 0 0 0 -x 0 0 0 0 z 0 0 0 0 0 0 |
{-5} | 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 |
{-5} | 0 0 0 0 -x y 0 0 0 0 0 0 0 0 0 |
{-5} | 0 0 0 0 0 x y 0 0 0 0 0 0 0 0 |
{-5} | 0 0 0 0 0 0 x y 0 0 0 0 0 0 0 |
{-5} | 0 0 0 0 0 0 0 -x y 0 0 0 0 0 0 |
{-5} | 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 |
{-6} | 0 0 0 0 0 0 0 0 0 -y 0 z 0 0 0 |
{-6} | 0 0 0 0 0 0 0 0 0 x -y 0 z 0 0 |
{-6} | 0 0 0 0 0 0 0 0 0 0 -x 0 0 z 0 |
{-6} | z2 0 0 0 0 0 0 0 0 0 0 y 0 0 0 |
{-6} | 0 -z2 0 0 0 0 0 0 0 0 0 x y 0 0 |
{-6} | 0 0 z2 0 0 0 0 0 0 0 0 0 -x y 0 |
{-6} | 0 0 0 z2 0 0 0 0 0 0 0 0 0 x 0 |
{-7} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z |
{-7} | 0 0 0 0 0 0 0 0 0 z2 0 0 0 0 y |
{-7} | 0 0 0 0 0 0 0 0 0 0 z2 0 0 0 x |

21
o100 : B’-module, quotient of B’

Compute the Poincaré series in two variables PB
′

M ′(t, u).
i101 : poincareSeries2 M’

-7 -6 -5 -6 -5 -4 2 -5 2 - · · ·
3u + 7u + 11u + t*u + 5t*u + 9t*u - 6t u - 14t u · · ·

o101 = --------------------------------------------------------------- · · ·
· · ·
· · ·

o101 : Divide

Example 6.2.4. We compute PBM (t) for the module M from Example 6.1.1.
i102 : p = poincareSeries1 M

2 3 4 5 6 7
3 + 2t - 5t + 4t + 12t + t - 4t - t

o102 = -----------------------------------------
2 2 2

(1 - t )(1 - t )(1 - t )

o102 : Divide

We have written some rather näıve code for simplifying rational functions as
above. It locates factors of the form 1 − tn in the denominator, factors out
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1−t, and factors out 1+t if n is even. Keeping the factors of the denominator
separate, it then cancels as many of them as it can with the numerator.

i103 : load "simplify.m2"

i104 : simplify p

2 3 4 5 6
3 - t - 4t + 8t + 4t - 3t - t

o104 = ----------------------------------
2 3

(1 + t) (1 - t)

o104 : Divide

In this case, it succeeded in canceling a factor of 1 + t.

Example 6.2.5. We compute some Betti numbers for M . We use the di-
vision operation in the Euclidean domain T ′ = Q[t, t−1] with the reverse
monomial ordering to compute power series expansions.

i105 : T’ = QQ[t,Inverses=>true,MonomialOrder=>RevLex];

i106 : expansion = (n,q) -> (
t := T’_0;
rho := map(T’,T,{t,1});
num := rho value numerator q;
den := rho value denominator q;
n = n + first degree den;
n = max(n, first degree num + 1);
(num + t^n) // den
);

Now let’s expand the Poincaré series up to t20.
i107 : expansion(20,p)

2 3 4 5 6 7 8 9 · · ·
o107 = 3 + 2t + 4t + 10t + 15t + 25t + 32t + 46t + 55t + 73t + · · ·

o107 : T’

Just to make sure, let’s compare the first few coefficients with the more
pedestrian way of doing the computation, one Ext module at a time.

i108 : psi = map(K,B)

o108 = map(K,B,{0, 0, 0})

o108 : RingMap K <--- B

i109 : apply(10, i -> rank (psi ** Ext^i(M,coker vars B)))

o109 = {3, 2, 4, 10, 15, 25, 32, 46, 55, 73}

o109 : List

Now we restore t to its original use.
i110 : use T;
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6.3 Complexity

The complexity of M is the least d ∈ N such that the function

n 7→ dimK ExtnB(M,k)

is bounded above by a polynomial of degree d− 1 (with the convention that
the zero polynomial has degree −1). This number, denoted cxB(M), was
introduced in [2] to measures on a polynomial scale the rate of growth of the
Betti numbers of M . It is calibrated so that cxB(M) = 0 if and only if M
has finite projective dimension. Corollary 4.11 yields

PBM (t) =
pBM (t)

(1− t2)c
for some pBM (t) ∈ Z[t]

Decomposing the right hand side into partial fractions, one sees that cxR(M)
equals the order of the pole of PBM (t) at t = 1; in particular, cxR(M,N) ≤ c.
However, since we get PBM (t) from a computation of the R-module P =
Ext•B(M,k), it is natural to obtain cxR(M) as the Krull dimension of P .

Code 6.3.1. The function complexity M yields the complexity of a graded
module M over a graded complete intersection ring B.

i111 : complexity = M -> dim Ext(M,coker vars ring M);

Example 6.3.2. We compute cxB(M) for M from Example 6.1.1.
i112 : complexity M

o112 = 3

6.4 Critical Degree

The critical degree of M is the least integer ` for which the minimal reso-
lution F of M admits a chain map g : F → F of degree m < 0, such that
gm+n : Fm+n → Fn is surjective for all n > `. This number, introduced in [6]
and denoted crdegBM , is meaningful over every graded ring B. It is equal
to the projective dimension whenever the latter is finite.

WhenB is a complete intersection it is proved in [6, Sect. 7] that crdegBM
is finite and yields important information on the Betti sequence:

• if cxBM ≤ 1, then βBn (M) = βBn+1(M) for all n > crdegBM .
• if cxBM ≥ 2, then βBn (M) < βBn+1(M) for all n > crdegBM .

Thus, it is interesting to know crdegBM , or at least to have a good upper
bound. Here is what is known, in terms of h = depthB − depthBM .

• if cxBM = 0, then crdegBM = h.
• if cxBM = 1, then crdegBM ≤ h.
• if cxBM = 2, then crdegBM ≤ h+ 1 + max{2βBh (M)− 1 , 2βBh+1(M)}.
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The first part is the Auslander-Buchsbaum Equality, the second part is proved
in [11, Sect. 6], the third is established in [4, Sect. 7].

These upper bounds are realistic: there exist examples in complexity 1
when they are reached, and examples in complexity 2 when they are not
more than twice the actual value of the critical degree. If cxRM ≥ 3, then
it is an open problem whether the critical degree of M can be bounded in
terms that do not depend on the action of the cohomology operators.

However, in every concrete case crdegRM can be computed explicitly by
using Macaulay 2. Indeed, it is proved in [6, Sect. 7] that crdegRM is equal
to the highest degree of a non-zero element in the socle of the R-module
Ext•B(M,k), that is, the submodule consisting of elements annihilated by
(X1, . . . , Xc). The socle is naturally isomorphic to HomB(k,Ext•B(M,k)), so
it can be obtained by standard Macaulay 2 routines.

For instance, for the module M from Example 6.1.1, we get
i113 : k = coker vars ring H;

i114 : prune Hom(k,H)

o114 = 0

o114 : K [$X , $X , x, y, Degrees => {{-2, -2}, {-2, -3}, {0, 1}, {0, · · ·
1 2

The degrees displayed above show that crdegRM = 1.

Of course, one might prefer to see the number crdegBM directly.

Code 6.4.1. The function criticalDegree M computes the critical degree
of a graded module M over a graded complete intersection ring B.

i115 : criticalDegree = M -> (
B := ring M;
k := B / ideal vars B;
P := Ext(M,k);
k = coker vars ring P;
- min ( first \ degrees source gens prune Hom(k,P))
);

Let’s test the new code in a couple of cases.

Example 6.4.2. For the module M of Example 6.1.1 we have
i116 : criticalDegree M

o116 = 1

in accordance with what was already observed above.
For the module M ′ of Example 6.2.3 we obtain
i117 : criticalDegree M’

o117 = 5
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6.5 Support Variety

Let K denote an algebraic closure of K. The support variety V∗B(M) is
the algebraic set in Kc defined by the annihilator of Ext•B(M,k) over R =
K[X1, . . . , Xc]. This ‘geometric image’ of the contravariant cohomology mod-
ule was introduced in [2] and used to study the minimal free resolution of
M . The dimension of the support variety is equal to the complexity cxR(M),
that we can already compute. There is no need to associate a variety to the
covariant cohomology module, see 7.4.

Since V∗B(M) is defined by homogeneous equations, it is a cone in Kc. An
important open problem is whether every cone in Kc that can be defined
over K is the variety of some B-module M . By [2, Sect. 6] all linear subspaces
and all hypersurfaces arise in this way, but little more is known in general.

Feeding our computation of Ext•B(M,k) to standard Macaulay 2 routines
we write code for determining a set of equations defining V∗B(M).

Code 6.5.1. The function supportVarietyIdeal M yields a set of polyno-
mial equations with coefficients in K, defining the support variety V∗B(M) in
Kc for a graded module M over a graded complete intersection B.

i118 : supportVarietyIdeal = M -> (
B := ring M;
k := B/ideal vars B;
ann Ext(M,k)
);

As before, we illustrate the code with explicit computations. In view of
the open problem mentioned above, we fix a ring and a type of presentation,
then change randomly the presentation matrix in the hope of finding an
‘interesting’ variety. The result of the experiment is assessed in Remark 6.5.3.

Example 6.5.2. Let F7 denote the prime field with 7 elements, and form
the zero-dimensional complete intersection B′′ = F7[x, y, z]/(x7, y7, z7).

i119 : K’’ = ZZ/7;

i120 : A’’ = K’’[x,y,z];

i121 : J’’ = ideal(x^7,y^7,z^7);

o121 : Ideal of A’’

i122 : B’’ = A’’/J’’;

We apply the code above to search, randomly, for some varieties. Using scan
we print the results from several runs with one command.

i123 : scan((1,1) .. (3,3), (r,d) -> (
V := cokernel random (B’’^r,B’’^{-d});
<< "--------------------------------------------------- · · ·
<< endl
<< "V = " << V << endl
<< "support variety ideal = "
<< timing supportVarietyIdeal V
<< endl))
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------------------------------------------------------------------
V = cokernel | -2x+3y+2z |
support variety ideal = ideal (X - 2X , X + X )

2 3 1 3
-- 0.7 seconds

------------------------------------------------------------------
V = cokernel | 3x2-2xy+xz-3yz |
support variety ideal = ideal(X + 3X + 2X )

1 2 3
-- 0.48 seconds

------------------------------------------------------------------
V = cokernel | -2x3+3x2y+y3-x2z-3y2z-xz2-3z3 |
support variety ideal = 0

-- 1.54 seconds
------------------------------------------------------------------
V = cokernel | -3y+3z |

| -2x-2y |
support variety ideal = ideal(X + X - X )

1 2 3
-- 0.86 seconds

------------------------------------------------------------------
V = cokernel | -x2+2y2-xz+yz+3z2 |

| 2xy-3xz-3yz-2z2 |
support variety ideal = 0

-- 1.31 seconds
------------------------------------------------------------------
V = cokernel | -x3-2x2y-xy2-2xyz+3y2z+2xz2-yz2-2z3 |

| 2xy2+3y3-3x2z-2y2z+2xz2+2yz2 |
support variety ideal = 0

-- 2.21 seconds
------------------------------------------------------------------
V = cokernel | 3x-y-z |

| -3x-y+2z |
| x-2y+3z |

support variety ideal = 0
-- 1.1 seconds

------------------------------------------------------------------
V = cokernel | 2x2-2xy+2y2+2xz-3z2 |

| -x2+2xy+y2+3xz+3yz-z2 |
| -2xz+2yz+2z2 |

support variety ideal = 0
-- 1.67 seconds

------------------------------------------------------------------
V = cokernel | 2x3-x2y+2xy2-y3-2xyz+3y2z+xz2+3yz2+z3 |

| -3x3-3x2y+3xy2+2x2z+3xyz-3y2z-xz2 |
| -3x3-2x2y-xy2-2y3-2xyz+y2z+xz2+3yz2-z3 |

support variety ideal = 0
-- 1.92 seconds

Remark 6.5.3. The (admittedly short) search above did not turn up any
non-linear variety. This should be contrasted with the known result that every
cone in F7

3 is the support variety of some B′′-module.
Indeed, B′′ is isomorphic to the group algebra F7[G] of the elementary

abelian group G = C7 × C7 × C7, where C7 is a cyclic group of order 7. It
is shown in [2, Sect. 7] that V∗B′′(V ) is equal to a variety V∗G(V ), defined
in a different way in [9] by Carlson. He proves in [10] that if K is a field of



Complete Intersections 39

characteristic p > 0, and G is an elementary abelian p-group of rank c, then
every cone in Kc is the rank variety of a finitely generated module over K[G].

6.6 Bass Series

The graded Bass number µnsB (M) of M over B is the number of direct sum-
mands isomorphic to U [s] in the n’th module of a minimal graded injective
resolution of M over B, where U is the injective envelope of k. It satisfies

µnsB (M) = dimK ExtnB(k,M)s

The graded Bass series of M over B is the generating function

IMB (t, u) =
∑

n∈N , s∈Z

µnsB (M) tnus ∈ Z[u, u−1][[t]]

It is easily computable with Macaulay 2 from the covariant cohomology mod-
ule, by using the hilbertSeries routine.

Code 6.6.1. The function bassSeries2 M computes the graded Bass series
of a graded module M over a graded complete intersection B.

i124 : bassSeries2 = M -> (
B := ring M;
k := B/ideal vars B;
I := Ext(k,M);
h := hilbertSeries I;
T’:= degreesRing I;
substitute(h, {T’_0=>t^-1, T’_1=>u})
);

As with Betti numbers and Poincaré series, there are ungraded versions
of Bass numbers and Bass series; they are given, respectively, by

µnB(M) =
∞∑
s=0

µnsB (M) and IMB (t) = IMB (t, 1)

Code 6.6.2. The function bassSeries1 M computes the Bass series of a
graded module M over a graded complete intersection B.

i125 : bassSeries1 = M -> (
substitute(bassSeries2 M, {u=>1_T})
);

Now let’s use these codes in computations.

Example 6.6.3. For k, the residue field of B, the contravariant and covari-
ant cohomology modules coincide. For comparison, we compute side by side
the Poincaré series and the Bass series of k, when B = K[x, y, z]/(x3, y4, z5)
is the ring defined in Example 6.1.1.
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i126 : use B;

i127 : L = B^1/(x,y,z);

i128 : p = poincareSeries2 L

2 2 3 3
1 + 3t*u + 3t u + t u

o128 = ------------------------------
2 3 2 4 2 5

(1 - t u )(1 - t u )(1 - t u )

o128 : Divide

i129 : b = bassSeries2 L

-1 2 -2 3 -3
1 + 3t*u + 3t u + t u

o129 = ---------------------------------
2 -3 2 -4 2 -5

(1 - t u )(1 - t u )(1 - t u )

o129 : Divide

The reader would have noticed that the two series are different, and that one
is obtained from the other by the substitution u 7→ u−1. This underscores
the different meanings of the graded Betti numbers and Bass numbers.

Example 6.6.4. Here we compute the graded and ungraded Bass series of
the B-module M of Example 6.1.1.

i130 : b2 = bassSeries2 M

6 3 4 5 2 2 2 3 3 3 3 2 · · ·
7u + t*u + 9t*u + 3t*u - t u - t u - 4t - 3t u - 3t u + · · ·

o130 = --------------------------------------------------------------- · · ·
2 -3 2 -4 2 -5

(1 - t u )(1 - t u )(1 - t u )

o130 : Divide

i131 : b1 = bassSeries1 M;

i132 : simplify b1

2 3 4
7 + 6t - 8t - 2t + 3t

o132 = ------------------------
2 3

(1 + t) (1 - t)

o132 : Divide

7 Invariants of Pairs of Modules

In this final section we compute invariants of a pair (M,N) of graded modules
over a graded complete intersection B, derived from the reduced Ext module
ext•B(M,N) defined in Remark 4.10. The treatment here is parallel to that
in Section 6. When one of the modules M or N is equal to the residue field
k, the invariants discussed below reduce to those treated in that section.
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7.1 Reduced Ext Module

The reduced Ext module ext•B(M,N) = Ext•B(M,N)⊗Ak defined in Remark
4.10 is computed from our basic routine Ext(M,N) by applying the function
changeRing defined in Code 6.1.2.

Code 7.1.1. The function ext(M,N) computes ext•B(M,N) when M and N
are graded modules over a graded complete intersection B.

i133 : ext = (M,N) -> changeRing Ext(M,N);

Example 7.1.2. Using the ring B = K[x, y, z]/(x3, y4, z5) and the module
M created in Example 6.1.1, we make new modules

N = B/(x2 + z2 , y3) and N ′ = B/(x2 + z2 , y3 − 2z3)

i134 : use B;

i135 : N = B^1/(x^2 + z^2,y^3);

i136 : time rH = ext(M,N);
-- used 15.91 seconds

i137 : evenPart rH

o137 = cokernel {-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 0 0 0 0 0 X_3 0 0 0 · · ·
{0, 2} | 0 0 0 0 0 X_3 0 0 0 0 0 · · ·
{0, 2} | 0 0 0 0 0 0 X_3 0 0 0 0 · · ·
{0, 2} | 0 0 0 0 X_3 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 0 X_3 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 X_3 0 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 X_3 0 0 0 0 0 0 0 0 X_2 · · ·
{0, 2} | X_3 0 0 0 0 0 0 0 0 X_2 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 1} | 0 0 0 0 0 0 0 0 X_2 0 0 · · ·

· · ·
o137 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-modul · · ·

1 2 3 · · ·
i138 : oddPart rH

o138 = cokernel {-3, -6} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-1, -1} | -39X_3 0 0 0 0 0 0 0 X_2 0 · · ·
{-1, -1} | 31X_3 0 0 0 0 0 0 X_2 0 0 · · ·
{-1, -1} | -34X_3 0 0 0 0 0 X_2 0 0 0 · · ·
{-1, -1} | -35X_3 0 0 0 0 X_2 0 0 0 0 · · ·
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{-1, -1} | -29X_3 0 0 0 X_2 0 0 0 0 0 · · ·
{-1, -1} | 12X_3 0 0 X_2 0 0 0 0 0 0 · · ·
{-1, -1} | -8X_3 0 X_2 0 0 0 0 0 0 0 · · ·
{-1, -1} | X_3 X_2 0 0 0 0 0 0 0 0 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 0 X_1 · · ·

· · ·
o138 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-modul · · ·

1 2 3 · · ·
i139 : N’ = B^1/(x^2 + z^2,y^3 - 2*z^3);

i140 : time rH’ = ext(M,N’);
-- used 20.26 seconds

i141 : evenPart rH’

o141 = cokernel {-4, -8} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -8} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-4, -9} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 0 0 0 0 X_3 0 0 0 0 · · ·
{0, 2} | 0 0 0 0 0 X_3 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 0 0 X_3 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 X_3 0 0 0 0 0 0 0 X_2 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 0 0 X_3 0 0 0 0 0 0 0 · · ·
{0, 2} | 0 X_3 0 0 0 0 0 0 0 X_2 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{-2, -4} | 0 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 2} | X_3 0 0 0 0 0 0 0 0 0 0 · · ·
{0, 1} | 0 0 0 0 0 0 0 X_2 0 0 0 · · ·
{0, 1} | 0 0 0 0 0 0 0 0 X_2 0 0 · · ·

· · ·
o141 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-modul · · ·

1 2 3 · · ·
i142 : oddPart rH’

o142 = cokernel {-3, -6} | 0 0 0 0 0 0 0 0 -42X_2 21X_ · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 -6X_2 -32X · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 -8X_2 12X_ · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 26X_2 -36X · · ·
{-3, -6} | 0 0 0 0 0 0 0 0 50X_2 18X_ · · ·



Complete Intersections 43

{-3, -6} | 0 0 0 0 0 0 0 0 31X_2 7X_2 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 0 0 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 0 X_1 · · ·
{-3, -7} | 0 0 0 0 0 0 0 0 X_1 0 · · ·
{-1, -2} | 0 0 0 X_2 0 0 0 X_1 0 0 · · ·
{-1, -2} | 0 0 X_2 0 0 0 X_1 0 0 0 · · ·
{-1, -2} | 0 X_2 0 0 0 X_1 0 0 0 0 · · ·
{-1, -2} | X_2 0 0 0 X_1 0 0 0 0 0 · · ·

· · ·
o142 : K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]-modul · · ·

1 2 3 · · ·

7.2 Ext-generator Series

The Ext-generator series GM,N
B (t, u) defined in Remark 4.10 generalizes both

the Poincaré series of M and the Bass series of N , as seen from the formulas

PBM (t, u) = GM,k
B (t, u) and INB (t, u) = Gk,NB (t, u−1)

Similar equalities hold for the corresponding series in one variable. Codes for
computing Ext-generator series are easy to produce.

Code 7.2.1. The function extgenSeries2(M,N) computes GM,N
B (t, u) when

M and N are graded modules over a graded complete intersection B, and
presents it as a rational function with denominator (1− t2ur1) · · · (1− t2urc).

i143 : extgenSeries2 = (M,N) -> (
H := ext(M,N);
h := hilbertSeries H;
T’:= degreesRing H;
substitute(h, {T’_0=>t^-1,T’_1=>u^-1})
);

Code 7.2.2. The function extgenSeries1(M,N) computes the Ext-genera-
tor series in one variable for a pair (M,N) of graded modules over a graded
complete intersection B.

i144 : extgenSeries1 = (M,N) -> (
substitute(extgenSeries2(M,N), {u=>1_T})
);

Example 7.2.3. For M , N , and N ′ as in Example 7.1.2 we obtain
i145 : time extgenSeries2(M,N)

-- used 0.44 seconds

-2 -1 2 2 2 2 3 2 4 3 4 3 · · ·
8u + u + 8t*u - 8t u - 9t u - 9t u + 7t u - 8t u - 8t u · · ·

o145 = --------------------------------------------------------------- · · ·
· · ·
· · ·

o145 : Divide
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i146 : g=time extgenSeries1(M,N)
-- used 0.13 seconds

2 3 4 5 6 7
9 + 8t - 19t - 11t + 17t + 4t - 7t - t

o146 = --------------------------------------------
2 2 2

(1 - t )(1 - t )(1 - t )

o146 : Divide

i147 : simplify g

2 3 4
9 - t - 9t + 6t + t

o147 = ----------------------
2

(1 + t)(1 - t)

o147 : Divide

i148 : time extgenSeries2(M,N’)
-- used 0.15 seconds

-2 -1 2 2 2 2 2 3 2 4 3 5 · · ·
7u + 2u + 4t*u - 7t u - 9t u - 9t u + 16t u - 4t u + 2 · · ·

o148 = --------------------------------------------------------------- · · ·
· · ·
· · ·

o148 : Divide

i149 : g’=time extgenSeries1(M,N’)
-- used 0.18 seconds

2 3 4 5 6
9 + 4t - 9t + 4t + 8t - 2t - 2t

o149 = ------------------------------------
2 2 2

(1 - t )(1 - t )(1 - t )

o149 : Divide

i150 : simplify g’

2 3 5
9 - 5t - 4t + 8t - 2t

o150 = ------------------------
2 3

(1 + t) (1 - t)

o150 : Divide

7.3 Complexity

The complexity of a pair of B-modules (M,N) is the least d ∈ N such that
there exists a polynomial of degree d− 1 bounding above the function

n 7→ dimK extnB(M,N)
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It is denoted cxB(M,N) and measures on a polynomial scale the rate of
growth of the minimal number of generators of ExtnB(M,N); it vanishes if
and only if ExtnB(M,N) = 0 for all n� 0. Corollary 4.11 yields

GM,N
B (t) =

h(t)
(1− t2)c

for some h(t) ∈ Z[t]

so decomposition into partial fractions shows that cxR(M,N) equals the order
of the pole of GM,N

B (t) at t = 1. Alternatively, cxR(M,N) can be obtained
by computing the Krull dimension of a reduced Ext module over R.

Code 7.3.1. The function complexityPair(M,N) yields the complexity of
a pair (M,N) of graded modules over a graded complete intersection ring B.

i151 : complexityPair = (M,N) -> dim ext(M,N);

Example 7.3.2. For M , N , and N ′ as in Example 7.1.2 we have
i152 : time complexityPair(M,N)

-- used 0.39 seconds

o152 = 2

i153 : time complexityPair(M,N’)
-- used 0.12 seconds

o153 = 3

7.4 Support Variety

Let K be an algebraic closure of K. The support variety V∗B(M,N) is the
algebraic set in Kc defined by the annihilator of ext•B(M,N) over R =
K[X1, . . . , Xc]. It is clear from the definition that V∗B(M,k) is equal to
the variety V∗B(M) defined in 6.5. One of the main results of [5, Sect. 5]
shows that V∗B(M,N) = V∗B(M)∩V∗B(N), and, as a consequence, V∗B(M) =
V∗B(M,M) = V∗B(k,M). The dimension of V∗B(M,N) is equal to the com-
plexity cxR(M,N), already computed above.

Feeding our computation of ext•B(M,N) to standard Macaulay 2 routines
we write code for determining a set of equations defining V∗B(M,N).

Code 7.4.1. The function supportVarietyPairIdeal(M,N) yields a set of
polynomial equations with coefficients in K, defining the variety V∗B(M,N)
in Kc for graded modules M , N over a graded complete intersection B.

i154 : supportVarietyPairIdeal = (M,N) -> ann ext(M,N);

Example 7.4.2. For M , N , and N ′ as in Example 7.1.2 we have
i155 : time supportVarietyPairIdeal(M,N)

-- used 0.97 seconds

o155 = ideal X
1

o155 : Ideal of K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]
1 2 3
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i156 : time supportVarietyPairIdeal(M,N’)
-- used 1.73 seconds

o156 = 0

o156 : Ideal of K [X , X , X , Degrees => {{-2, -3}, {-2, -4}, {-2, -5}}]
1 2 3

Appendix A. Gradings

Our purpose here is to set up a context in which the theory of Sections 3 and
4 translates into data that Macaulay 2 can operate with.

A first point is to develop a flexible and consistent scheme within which
to handle the two kinds of degrees we deal with—the internal gradings of the
input, and the homological degrees created during computations.

A purely technological difficulty arises when our data are presented to
Macaulay 2: it only accepts multidegrees whose first component is positive,
which is not the case for rings of cohomology operators.

A final point, mostly notational, tends to generate misunderstanding and
errors if left unaddressed. On the printed page, the difference between ho-
mological and cohomological conventions is handled graphically by switching
between sub- and super-indices, and reversing signs; both authors were used
to it, but Macaulay 2 has so far refused to read TEX printouts.

The raison d’être of the following remarks was to debug communications
between the three of us.

Remark A.1. Only one degree, denoted deg, appears in Section 2, and any-
where in the main text before Notation 4.7; when needed, it will be referred
to as homological degree.

Assume that A =
⊕

h∈ZAh is a graded ring. Any element a of Ah is said
to be homogeneous of internal degree h; the notation for this is deg′ a = h. Let
f = {f1, . . . , fc} be a Koszul-regular set consisting of homogeneous elements.
We give the ring B = A/(f) the induced grading, and extend the notation
for internal degree to all graded B-modules M .

Let M be a graded B-module. For any integer e, we let M [e] denote the
graded module with M [e]d = Md+e. We take a projective resolution C of M
by graded A-modules, with differential dC preserving internal degrees. Recall
that we have been writing deg x = n to indicate that x is an element in Cn;
we refer to this situation also by saying that x has homological degree x. We
combine both degrees in a single bidegree, denoted Deg, as follows:

Deg x = (deg x,deg′ x)

For a bigraded module H and pair of integers (e, e′), we let H[e, e′] denote
the bigraded module with H[e, e′]d,d′ = Hd+e,d′+e′ .

Because deg Yi = 2, the elements of the free B-module Q have homological
degree 2. We introduce an internal grading deg′ on Q by setting deg′ Yi = ri,
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where ri = deg′ fi for i = 1, . . . , c. With this choice, the homomorphism
f : Q → A acquires internal degree 0 (of course, this was the reason behind
our choice of grading in the first place). The internal grading on Q defines, in
the usual way, internal gradings on all symmetric and exterior powers of Q
and Q∗; in particular, deg′ Y (α) =

∑
αiri and deg′ Y ∧β =

∑
βiri. Thus, the

ring S = A[X1, . . . , Xc] acquires a bigrading defined by Deg a = (0, h) for all
elements a ∈ Ah and DegXi = (−2,−ri) for i = 1, . . . , c.

In this context, we call S the bigraded ring of cohomology operators.
Since the differential dC has internal degree 0, a null-homotopic chain map

C → C which is homogeneous of internal degree r will have a null-homotopy
that is itself homogeneous of internal degree r. In the proof of Theorem
3.1 we construct maps dγ as null-homotopies, so we may arrange for them
to be homogeneous maps with deg′ dγ =

∑
γidi. Our grading assumptions

guarantee that d is homogeneous with Deg d = (−1, 0).
With these data, the B-free resolution C ⊗A D′ provided by Theorem

4.1 becomes one by graded B-modules, and its differential ∂ is homogeneous
with Deg ∂ = (−1, 0). For any graded B-module N , these properties are
transferred to the complex HomB(C ⊗A D′, N) and its differential.

We sum up the contents of Remarks 4.3 and A.1.

Remark A.2. If A is a graded ring, {f1, . . . , fc} is a Koszul-regular set
consisting of homogeneous elements, B is the residue ring A/(f), and M,N
are graded B-modules, then Ext•B(M,N) is a bigraded module over the ring
S = A[X1, . . . , Xc], itself bigraded by setting Deg a = (0,deg′(a)) for all
homogeneous a ∈ A and DegXi = (−2,−deg′(fi)) for i = 1, . . . , c.

Remark A.3. The core algorithms of the program can handle multi-graded
rings and modules, but only if each variable in the ring has positive first
component of its multi-degree. At the moment, a user who needs a multi-
graded ring R which violates this requirement must provide two linear maps:
R.Adjust, that transforms the desired multi-degrees into ones satisfying this
requirement, as well as its inverse map, R.Repair. The routine Ext, discussed
above, incorporates such adjustments for the rings of cohomology operators
it creates. When we wish to create related rings with some of the same multi-
degrees, we may use the same adjustment operator.
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